Processing Math: Done
1.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-Answer +Antwort)) |
K (Robot: Automated text replacement (-Solution +Lösung)) |
||
Zeile 26: | Zeile 26: | ||
||{{:1.1 - Figure - The graph of f(x) in exercise 1.1:1}} | ||{{:1.1 - Figure - The graph of f(x) in exercise 1.1:1}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:1| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:1|Lösung a|Lösung 1.1:1a|Lösung b|Lösung 1.1:1b|Lösung c|Lösung 1.1:1c}} |
===Übung 1.1:2=== | ===Übung 1.1:2=== | ||
Zeile 46: | Zeile 46: | ||
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | |width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:2| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:2|Lösung a|Lösung 1.1:2a|Lösung b|Lösung 1.1:2b|Lösung c|Lösung 1.1:2c|Lösung d|Lösung 1.1:2d|Lösung e|Lösung 1.1:2e|Lösung f|Lösung 1.1:2f}} |
===Übung 1.1:3=== | ===Übung 1.1:3=== | ||
Zeile 52: | Zeile 52: | ||
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:3| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:3|Lösung |Lösung 1.1:3}} |
===Übung 1.1:4=== | ===Übung 1.1:4=== | ||
Zeile 58: | Zeile 58: | ||
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:4| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:4|Lösung |Lösung 1.1:4}} |
===Übung 1.1:5=== | ===Übung 1.1:5=== | ||
Zeile 64: | Zeile 64: | ||
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | ||
- | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:5| | + | </div>{{#NAVCONTENT:Antwort|Antwort 1.1:5|Lösung |Lösung 1.1:5}} |
Version vom 13:33, 10. Mär. 2009
Theorie | Übungen |
Übung 1.1:1
The graph for
(Each square in the grid of the figure has width and height 1.) | 1.1 - Figure - The graph of f(x) in exercise 1.1:1 |
Übung 1.1:2
Determine the derivative (x)
a) | | b) | | c) | |
d) | ![]() | e) | | f) | ![]() ![]() |
Übung 1.1:3
A small ball, that is released from a height of 82t2
Übung 1.1:4
Determine the equation for the tangent and normal to the curve 1)
Übung 1.1:5
Determine all the points on the curve 1)