Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Answer +Antwort))
K (Robot: Automated text replacement (-Solution +Lösung))
Zeile 26: Zeile 26:
||{{:1.1 - Figure - The graph of f(x) in exercise 1.1:1}}
||{{:1.1 - Figure - The graph of f(x) in exercise 1.1:1}}
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:1|Solution a|Solution 1.1:1a|Solution b|Solution 1.1:1b|Solution c|Solution 1.1:1c}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:1|Lösung a|Lösung 1.1:1a|Lösung b|Lösung 1.1:1b|Lösung c|Lösung 1.1:1c}}
===Übung 1.1:2===
===Übung 1.1:2===
Zeile 46: Zeile 46:
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math>
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math>
|}
|}
-
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:2|Solution a|Solution 1.1:2a|Solution b|Solution 1.1:2b|Solution c|Solution 1.1:2c|Solution d|Solution 1.1:2d|Solution e|Solution 1.1:2e|Solution f|Solution 1.1:2f}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:2|Lösung a|Lösung 1.1:2a|Lösung b|Lösung 1.1:2b|Lösung c|Lösung 1.1:2c|Lösung d|Lösung 1.1:2d|Lösung e|Lösung 1.1:2e|Lösung f|Lösung 1.1:2f}}
===Übung 1.1:3===
===Übung 1.1:3===
Zeile 52: Zeile 52:
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
-
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:3|Solution |Solution 1.1:3}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:3|Lösung |Lösung 1.1:3}}
===Übung 1.1:4===
===Übung 1.1:4===
Zeile 58: Zeile 58:
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
-
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:4|Solution |Solution 1.1:4}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:4|Lösung |Lösung 1.1:4}}
===Übung 1.1:5===
===Übung 1.1:5===
Zeile 64: Zeile 64:
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
-
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:5|Solution |Solution 1.1:5}}
+
</div>{{#NAVCONTENT:Antwort|Antwort 1.1:5|Lösung |Lösung 1.1:5}}

Version vom 13:33, 10. Mär. 2009

       Theorie          Übungen      

Übung 1.1:1

The graph for f(x) is shown in the figure.

a) What are the signs of f(4) and f(1)?
b) For what values of x is f(x)=0?
c) In which interval(s) is f(x) negative?

(Each square in the grid of the figure has width and height 1.)

1.1 - Figure - The graph of f(x) in exercise 1.1:1

Übung 1.1:2

Determine the derivative f(x) when

a) f(x)=x23x+1 b) f(x)=cosxsinx c) f(x)=exlnx
d) f(x)=x  e) f(x)=(x21)2 f) f(x)=cos(x+3)

Übung 1.1:3

A small ball, that is released from a height of h=10m above the ground at time t=0, is at a height h(t)=102982t2 at time t (measured in seconds) What is the speed of the ball when it hits the grounds?

Übung 1.1:4

Determine the equation for the tangent and normal to the curve y=x2 at the point (11).

Übung 1.1:5

Determine all the points on the curve y=x2 which have a tangent that goes through the point (11).