Processing Math: 69%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

3.4 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Solution +Lösung))
K (Robot: Automated text replacement (-Selected tab +Gewählter Tab))
Zeile 3: Zeile 3:
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
{{Not selected tab|[[3.4 Komplexe Polynome|Theorie]]}}
{{Not selected tab|[[3.4 Komplexe Polynome|Theorie]]}}
-
{{Selected tab|[[3.4 Übungen|Übungen]]}}
+
{{Gewählter Tab|[[3.4 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}

Version vom 13:41, 10. Mär. 2009

       Theorie          Übungen      

Übung 3.4:1

Carry out the following divisions (not all are exact, i.e. have no remainder)

a) x1x21 b) x2x+1 c) x+ax3+a3
d) x+1x3+x+2 e) x2+3x+1x3+2x2+1

Übung 3.4:2

The equation z33z2+4z2=0 has the root z=1. Determine the other roots.

Übung 3.4:3

The equation z4+2z3+6z2+8z+8=0 has the roots z=2i and z=1i. Solve the equation.

Übung 3.4:4

Determine two real numbers a and b, such that the equation  z3+az+b=0  has the root z=12i. Then solve the equation.

Übung 3.4:5

Determine a and b so that the equation \displaystyle \ z^4-6z^2+az+b=0\ has a triple root. Then solve the equation.

Übung 3.4:6

The equation \displaystyle \ z^4+3z^3+z^2+18z-30=0\ has a pure imaginary root. Determine all the roots.

Übung 3.4:7

Determine the polynomial which has the following zeros

a) \displaystyle 1\,, \displaystyle \,2\, and \displaystyle \,4 b) \displaystyle -1+ i\, and \displaystyle \,-1-i