Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

3.4 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Selected tab +Gewählter Tab))
K (Robot: Automated text replacement (-Not selected tab +Nicht gewählter Tab))
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Not selected tab|[[3.4 Komplexe Polynome|Theorie]]}}
+
{{Nicht gewählter Tab|[[3.4 Komplexe Polynome|Theorie]]}}
{{Gewählter Tab|[[3.4 Übungen|Übungen]]}}
{{Gewählter Tab|[[3.4 Übungen|Übungen]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  

Version vom 13:44, 10. Mär. 2009

       Theorie          Übungen      

Übung 3.4:1

Carry out the following divisions (not all are exact, i.e. have no remainder)

a) x1x21 b) x2x+1 c) x+ax3+a3
d) x+1x3+x+2 e) x2+3x+1x3+2x2+1

Übung 3.4:2

The equation z33z2+4z2=0 has the root z=1. Determine the other roots.

Übung 3.4:3

The equation z4+2z3+6z2+8z+8=0 has the roots z=2i and z=1i. Solve the equation.

Übung 3.4:4

Determine two real numbers a and b, such that the equation  z3+az+b=0  has the root z=12i. Then solve the equation.

Übung 3.4:5

Determine a and b so that the equation  z46z2+az+b=0  has a triple root. Then solve the equation.

Übung 3.4:6

The equation  z4+3z3+z2+18z30=0  has a pure imaginary root. Determine all the roots.

Übung 3.4:7

Determine the polynomial which has the following zeros

a) 1, 2 and 4 b) 1+i and 1i