Lösung 2.1:4d
Aus Online Mathematik Brückenkurs 2
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
K (Solution 2.1:4d moved to Lösung 2.1:4d: Robot: moved page) |
Version vom 10:18, 11. Mär. 2009
We start by drawing the three curves:
When we draw the curves on the same diagram, we see that the region is bounded from below in the y-direction by the horizontal line x
If we denote the x-coordinates of the intersection points between the curves by x
The area of each part is given by the integrals
![]() ![]() ![]() ![]() ![]() ![]() |
and the total area is the sum of these areas.
If we just manage to determine the curves' points of intersection, the rest is just a matter of integration.
To determine the points of intersection:
x=a : The point of intersection betweeny=1 andy=x+2 must satisfy both equations of the lines,
![]() ![]() |
- This gives that
x must satisfyx+2=1 , i.e.x=−1 . Thus,a=−1 .
x=b : At the point where the curvesy=x+2 andy=1 meet, we have thatx
![]() ![]() ![]() |
- If we eliminate
y , we obtain an equation forx ,
![]() |
- which we multiply by
x ,
- Completing the square of the left-hand side,
![]() ![]() |
- and taking the square root gives that
x=−1 , leading to2
\displaystyle b=-1+\sqrt{2}. (The alternative \displaystyle b=-1-\sqrt{2} lies to the left of \displaystyle x=a\,.)
- \displaystyle x=c: The final point of intersection is given by the condition that the equation to both curves, \displaystyle y=1 and \displaystyle y=1/x\,, are satisfied simultaneously. We see almost immediately that this gives \displaystyle x=1\,, i.e. \displaystyle c=1\,.
The sub-areas are
\displaystyle \begin{align}
\text{Left area} &= \int\limits_{-1}^{\sqrt{2}-1} (x+2-1)\,dx\\[5pt] &= \int\limits_{-1}^{\sqrt{2}-1} (x+1)\,dx\\[5pt] &= \Bigl[\ \frac{x^2}{2} + x\ \Bigr]_{-1}^{\sqrt{2}-1}\\[5pt] &= \frac{\bigl(\sqrt{2}-1\bigr)^2}{2} + \sqrt{2} - 1 - \Bigl(\frac{(-1)^2}{2} + (-1) \Bigr)\\[5pt] &= \frac{\bigl(\sqrt{2}\bigr)^2-2\sqrt{2}+1}{2} + \sqrt{2} - 1 - \frac{1}{2} + 1\\[5pt] &= \frac{2-2\sqrt{2}+1}{2} + \sqrt{2} - 1 - \frac{1}{2} + 1\\[5pt] &= 1 - \sqrt{2} + \frac{1}{2} + \sqrt{2} - 1 - \frac{1}{2} + 1\\[5pt] &= 1\,,\\[10pt] \text{Right area} &= \int\limits_{\sqrt{2}-1}^1 \Bigl(\frac{1}{x}-1\Bigr)\,dx\\[5pt] &= \Bigl[\ \ln |x| - x\ \Bigr]_{\sqrt{2}-1}^1\\[5pt] &= \ln 1 - 1 - \Bigl( \ln \bigl(\sqrt{2}-1\bigr)-\bigl(\sqrt{2}-1\bigr)\Bigr)\\[5pt] &= 0 - 1 - \ln \bigl(\sqrt{2}-1\bigr) + \sqrt{2} - 1\\[5pt] &= \sqrt{2} - 2 - \ln\bigl(\sqrt{2}-1\bigr)\,\textrm{.} \end{align} |
The total area is
\displaystyle \begin{align}
\text{Area} &= \text{(left area)} + \text{(right area)}\\[5pt] &= 1 + \sqrt{2} - 2 - \ln\bigl(\sqrt{2}-1\bigr)\\[5pt] &= \sqrt{2} - 1 - \ln\bigl(\sqrt{2}-1\bigr)\,\textrm{.} \end{align} |