Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.1:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 3.1:2d moved to Lösung 3.1:2d: Robot: moved page)

Version vom 10:31, 11. Mär. 2009

Because the expression is rather large, we work step by step. We start by making the numerator and denominator each have the same denominator,

511+i3i+i23i=1+i5(1+i)11+i=1+i5+5i1=1+i4+5i=23i3i(23i)+i23i=23i6i9i2+i=23i9+7i.

Hence,

511+i3i+i23i= 23i9+7i1+i4+5i=(9+7i)(1+i)(4+5i)(23i).

We multiply out the numerator and denominator

(9+7i)(1+i)(4+5i)(23i)=91+9i+7i1+7ii4243i+5i25i3i=9+9i+7i7812i+10i+15=2+16i232i.

This is an ordinary quotient of two complex numbers which we compute by multiplying top and bottom by the complex conjugate of the numerator,

2+16i232i=(2+16i)(216i)(232i)(216i)=22(16i)22322316i2i2+2i16i=4+25646368i4i32=26014372i.

If we divide up the numbers into factors,

14372260=27=2186=2293=22331=1026=25132

we can simplify the answers

14260260372i=27225132251322331i=72513513331i=71306593i.