3.2 Polarform

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{:3.2 - Figure - The region ∣z - 2i∣ ≤ 3 and 1 ≤ Re z ≤ 2}} +{{:3.2 - Bild - Das Gebiet ∣z - 2i∣ ≤ 3 und 1 ≤ Re z ≤ 2}}))
Zeile 20: Zeile 20:
'''Lernziele:'''
'''Lernziele:'''
-
After this section, you will have learnt:
+
Nach diesem Abschnitt sollten Sie folgendes können:
*A geometric understanding of complex numbers and their arithmetic operations in the plane.
*A geometric understanding of complex numbers and their arithmetic operations in the plane.
Zeile 26: Zeile 26:
}}
}}
-
== The complex plane ==
+
== Die komplexe Zahlenebene ==
-
As a complex number <math>z=a+bi</math> consists of a real part <math>a</math> and an imaginary part <math>b</math>, one can consider <math>z</math> to be an ordered pair of numbers <math>(a,b)</math> and interpreted as a point in a coordinate system. We thus construct a coordinate system by drawing an imaginary axis ( a number axis having a unit <math>i</math>) perpendicular to a real axis (the real-number axis). We can now designate each complex number as a point in this coordinate system, and conversely each point defines a unique complex number.
+
Nachdem eine komplexe Zahl <math>z=a+bi</math> aus einen Realteil <math>a</math>, und einen Imaginärteil <math>b</math> besteht, kann man eine komplexe Zahl <math>z</math> wie ein Zahlenpaar <math>(a,b)</math> in eine Koordinatensystem sehen. Dieses Koordinatensystem konstruieren wir indem wir eine reelle Achse und eine imaginäre Achse winkelrecht zu einander einzeichnen. Jetzt entspricht jede komplexe zahle einen eindeutigen Punkt in der komplexen Zahlenebene.
<center>{{:3.2 - Bild - Die komplexe Zahlenebene}}</center>
<center>{{:3.2 - Bild - Die komplexe Zahlenebene}}</center>
 +
Diese geometrische Interpretation von den komplexen Zahlen nennt man die ''kompleze Zahlenebene''.
-
This geometric interpretation of the complex numbers is called the ''complex plane'' (sometimes the ''Argand diagram'').
 
 +
''Anmerkung:'' Die reellen Zahlen sind komplexe wo der Imaginärteil 0 ist, und die also auf der reellen Achse liegen. Daher kann man die Erweiterung der reellen Zahlen zu den Komplexen Zahlen so sehen dass man die Dimension der Zahlengerade zu einer Ebene erweitert.
-
''Note:'' The real numbers, that is all complex numbers with imaginary part 0, lie along the real axis. One can therefore regard the extension of the number system from <math>\mathbb{R}</math> (the real numbers) to <math>\mathbb{C}</math> (the complex numbers) to mean that one adjoins an extra dimension to the completely filled real-number axis .
+
Generell kann man komplexe Zahlen wie Vektoren behandeln.
- 
-
Addition of complex numbers has a quite natural and simple interpretation in the complex plane and is geometrically the same method as vector addition. Subtraction can be seen as the addition of the corresponding negative number, that is <math>z-w=z+(-w)</math>.
 
{| width="100%" align="center"
{| width="100%" align="center"
Zeile 50: Zeile 49:
|-
|-
||
||
-
| valign="top" |<small> Geometrically the number ''z''&nbsp;+&nbsp;''w'' is obtained by considering a hypothetical line segment from 0 to ''w'' which is parallel-displaced so that its initial point at 0 is moved to z. Then this line segments terminal point w lands at the point ''z''&nbsp;+&nbsp;''w''.</small>
+
| valign="top" |<small> Geometrisch erhält man die Zahl ''z''&nbsp;+&nbsp;''w'' indem man den Vektor von 0 bis ''w'' parallel zu z verschiebt.</small>
||
||
-
| valign="top" |<small>The subtraction ''z'' - ''w'' can be written as ''z'' + (-''w'') and can therefore be interpreted geometrically as a hypothetical line segment from 0 to -''w'' is parallel-displaced so that its initial point at 0 is moved to ''z''. Then this line segments terminal point -''w'' lands at the point ''z'' - ''w''.</small>
+
| valign="top" |<small>Die Subtraktion ''z'' - ''w'' kann wie ''z'' + (-''w'') geschrieben werden, und kann also geometrisch interpretiert also ob man den Vektor von 0 bis -''w'' parallel bis ''z'' verschiebt.</small>
||
||
|}
|}
Zeile 60: Zeile 59:
-
Given <math>z=2+i</math> and <math>w=-3-i</math>. Indicate <math>z</math>, <math>w</math>, <math>\overline{z}</math>, <math>\overline{z}-\overline{w}</math> and <math>z-w</math> in the complex plane.
+
Mit <math>z=2+i</math> und <math>w=-3-i</math>, zeichnen Sie <math>z</math>, <math>w</math>, <math>\overline{z}</math>, <math>\overline{z}-\overline{w}</math> und <math>z-w</math> in der komplexen Zahlenebene.
{| width="100%"
{| width="100%"
Zeile 71: Zeile 70:
|}
|}
-
Note that complex conjugate pairs are mirror images in the real axis.
+
Notieren Sie dass die konjugiert komplexen Zahlen Spiegelbilder in der reellen Achse sind.
</div>
</div>
Zeile 77: Zeile 76:
''' Beispiel 2'''
''' Beispiel 2'''
-
 
+
Zeichnen Sie alle Zahlen <math>z</math> in der komplexen Zahlenebene, die folgende Bedingungen erfüllen:
-
Indicate in the complex plane all numbers <math>z</math> that meet the following conditions:
+
<ol type="a">
<ol type="a">
<li><math>\mathop{\rm Re} z \ge 3\,</math>,</li>
<li><math>\mathop{\rm Re} z \ge 3\,</math>,</li>
<li><math> -1 < \mathop{\rm Im} z \le 2\,</math>.</li>
<li><math> -1 < \mathop{\rm Im} z \le 2\,</math>.</li>
</ol>
</ol>
 +
The first inequality defines the region in the figure on the left below, and the second inequality defines the region in the figure on the right below.
The first inequality defines the region in the figure on the left below, and the second inequality defines the region in the figure on the right below.

Version vom 15:51, 12. Mai 2009

       Theorie          Übungen      

Inhalt:

  • The complex plane
  • Addition and subtraction in the complex plane
  • Modulus and argument
  • Polar form
  • Multiplication and division in polar form
  • Multiplication with i in the complex plane

Lernziele:

Nach diesem Abschnitt sollten Sie folgendes können:

  • A geometric understanding of complex numbers and their arithmetic operations in the plane.
  • To be able to convert the complex number between the form a + ib and polar form.

Die komplexe Zahlenebene

Nachdem eine komplexe Zahl \displaystyle z=a+bi aus einen Realteil \displaystyle a, und einen Imaginärteil \displaystyle b besteht, kann man eine komplexe Zahl \displaystyle z wie ein Zahlenpaar \displaystyle (a,b) in eine Koordinatensystem sehen. Dieses Koordinatensystem konstruieren wir indem wir eine reelle Achse und eine imaginäre Achse winkelrecht zu einander einzeichnen. Jetzt entspricht jede komplexe zahle einen eindeutigen Punkt in der komplexen Zahlenebene.


[Image]

Diese geometrische Interpretation von den komplexen Zahlen nennt man die kompleze Zahlenebene.


Anmerkung: Die reellen Zahlen sind komplexe wo der Imaginärteil 0 ist, und die also auf der reellen Achse liegen. Daher kann man die Erweiterung der reellen Zahlen zu den Komplexen Zahlen so sehen dass man die Dimension der Zahlengerade zu einer Ebene erweitert.

Generell kann man komplexe Zahlen wie Vektoren behandeln.


[Image]

[Image]

Geometrisch erhält man die Zahl z + w indem man den Vektor von 0 bis w parallel zu z verschiebt. Die Subtraktion z - w kann wie z + (-w) geschrieben werden, und kann also geometrisch interpretiert also ob man den Vektor von 0 bis -w parallel bis z verschiebt.

Beispiel 1


Mit \displaystyle z=2+i und \displaystyle w=-3-i, zeichnen Sie \displaystyle z, \displaystyle w, \displaystyle \overline{z}, \displaystyle \overline{z}-\overline{w} und \displaystyle z-w in der komplexen Zahlenebene.

We have that
  • \displaystyle \overline{z}=2-i\,,
  • \displaystyle \overline{w}=-3+i\,,
  • \displaystyle z-w=2+i-(-3-i)
    \displaystyle \phantom{z-w}{}=5+2i\,,
  • \displaystyle \overline{z} -\overline{w} = 2-i -(-3+i)
    \displaystyle \phantom{\overline{z} -\overline{w}}{}=5-2i\quad ({}=\overline{z-w})\,.

[Image]

Notieren Sie dass die konjugiert komplexen Zahlen Spiegelbilder in der reellen Achse sind.

Beispiel 2

Zeichnen Sie alle Zahlen \displaystyle z in der komplexen Zahlenebene, die folgende Bedingungen erfüllen:

  1. \displaystyle \mathop{\rm Re} z \ge 3\,,
  2. \displaystyle -1 < \mathop{\rm Im} z \le 2\,.


The first inequality defines the region in the figure on the left below, and the second inequality defines the region in the figure on the right below.


[Image]

[Image]

All the numbers that satisfy Re z ≥ 3 have a real part that is greater than or equal to 3. These figures form the shaded semi-plane in the figure. Numbers that satisfy -1 < Im z ≤ 2 have an imaginary part that is between -1 and 2. These numbers are therefore in the ribbon-like region marked in the figure. The lower horizontal line is dotted and that means that points on that line do not belong to the shaded region.


Absolute value

The real numbers can be arranged in order of magnitude; that is, we can determine whether one real number is greater than another, which is the same as determining whether it lies further to the right on the real number line.

For the complex numbers this is not possible. We cannot decide which is the larger of, say, \displaystyle z=1-i and \displaystyle w=-1+i . With the help of the concept of absolute value however, we can define a measure of the size of a complex number.


For a complex number \displaystyle z=a+ib the absolute value or modulus \displaystyle |\,z\,| is defined as

\displaystyle |\,z\,|=\sqrt{a^2+b^2}\,\mbox{.}

We see that \displaystyle |\,z\,| is a real number, and that \displaystyle |\,z\,|\ge 0. For a real number \displaystyle b = 0 and then \displaystyle |\,z\,|=\sqrt{a^2}=|\,a\,|, which is consistent with the usual definition of an absolute value (or modulus) of a real number. Geometrically the absolute value is the distance from the number \displaystyle z=a+ib (the point \displaystyle (a, b)) to \displaystyle z = 0 (origin), according to Pythagoras' theorem.


[Image]


Distance between complex numbers

With the help of the formula for the distance between points in a coordinate system one can obtain an important and useful interpretation of the absolute value. The distance \displaystyle s between the two complex numbers \displaystyle z=a+ib and \displaystyle w=c+id (see fig.) can with the help of the formula for distance be written as

\displaystyle s=\sqrt{(a-c)^2+(b-d)^2}\,\mbox{.}

[Image]


Since \displaystyle z-w=(a-c)+i(b-d), one gets

\displaystyle |\,z-w\,|=\sqrt{(a-c)^2+(b-d)^2}={} distance between the numbers \displaystyle z and \displaystyle w.


Beispiel 3


Indicate the following sets in the complex plane:

  1. \displaystyle \,\, |\,z\,|=2

    The equation describes all numbers whose distance to the origin is 2. These numbers describe in the complex plane a circle with radius 2 and its centre at the origin.

[Image]

  1. \displaystyle \,\, |\,z-2\,|=1

    This equation is satisfied by all the numbers, whose distance from the number 2 is equal to 1, i.e. a circle of radius 1 and with its centre at \displaystyle z = 2.

[Image]

  1. \displaystyle \,\, |\,z+2-i\,|\le 2

    The left-hand side can be written \displaystyle |\,z-(-2+i)\,|, which means all the numbers at a distance \displaystyle {}\le 2 from the number \displaystyle -2+i, that is a circular disc a with a radius of 2 and its centre at \displaystyle -2+i.

[Image]

  1. \displaystyle \,\, \frac{1}{2}\le |\,z-(2+3i)\,|\le 1

    The set is given by any number whose distance from \displaystyle z=2+3i is between \displaystyle \frac{1}{2} and \displaystyle 1.

[Image]

Beispiel 4


Indicate in the complex plane all numbers \displaystyle z satisfying the following conditions:


  1. \displaystyle \, \left\{ \eqalign{&|\,z-2i\,|\le 3\cr &1\le\mathop{\rm Re} z\le 2}\right.

    The first inequality gives the points on and inside a circle with radius 3 and center at \displaystyle 2i. The second inequality is a vertical strip of points with their real part between 1 and 2. The area satisfying both inequalities is given by the points which lie both within the circle and within the strip.

  2. \displaystyle \, |\,z+1\,|=|\,z-2\,|

    The equation can be written as \displaystyle |\,z-(-1)\,|=|\,z-2\,|. This shows then that \displaystyle z should be at an equal distance from \displaystyle -1 and \displaystyle 2. This condition is met by all the numbers \displaystyle z that have a real part \displaystyle 1/2.

[Image]

[Image]

The shaded region consists of the points that satisfy the inequalities |z - 2i| ≤ 3 and 1 ≤ Re z ≤ 2. The points that satisfy the equation |z + 1| = |z - 2| lie on the line with real part equal to 1/2.


Polar form

Instead of representing a complex number \displaystyle z=x+iy by its rectangular coordinates \displaystyle (x,y) one can use polar coordinates. This means that one represents a numbers location in the complex plane by its distance \displaystyle r to the origin, and the angle \displaystyle \alpha, made by the positive real-line axis and the line from the origin to the number (see the figure).

[Image]


Since \displaystyle \,\cos\alpha = x/r\, and \displaystyle \,\sin\alpha = y/r\, then \displaystyle \,x = r\cos\alpha\, and \displaystyle \,y= r\sin\alpha. The number \displaystyle z=x+iy can be written as

\displaystyle z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{,}

which is called the polar form of a complex number \displaystyle z. The angle \displaystyle \alpha is called the argument of \displaystyle z and is written

\displaystyle \alpha=\arg\,z\,\mbox{.}

The angle \displaystyle \alpha, for example, can be determined by solving the equation \displaystyle \tan\alpha=y/x. This equation, however, has a number of solutions, so we must ensure that we choose the solution \displaystyle \alpha that allows \displaystyle z= r(\cos\alpha + i\sin\alpha) to end up in the correct quadrant.

The argument of a complex number is not uniquely determined because angles that differ by \displaystyle 2\pi indicate the same direction in the complex plane. Normally, one uses for the argument the angle between 0 and \displaystyle 2\pi or between \displaystyle -\pi and \displaystyle \pi.


The real number \displaystyle r, the distance to the origin as we have already seen, is the absolute value of \displaystyle z,

\displaystyle r=\sqrt{x^2+y^2}=|\,z\,|\,\mbox{.}

Beispiel 5


Write the following complex numbers in polar form:

  1. \displaystyle \,\,-3

    We have that \displaystyle |\,-3\,|=3 and \displaystyle \arg (-3)=\pi, which means that \displaystyle \ -3=3(\cos\pi+i\,\sin\pi).
  2. \displaystyle \,i

    We have that \displaystyle |\,i\,|=1 and \displaystyle \arg i = \pi/2 which in polar form is \displaystyle \ i=\cos(\pi/2)+i\,\sin(\pi/2)\,.
  3. \displaystyle \,1-i

    The formula for a the absolute value of a complex number gives \displaystyle |\,1-i\,|=\sqrt{1^2+(-1)^2}=\sqrt{2}. The complex number lies in the fourth quadrant and has an angle \displaystyle \pi/4 with the positive real axis, which gives \displaystyle \arg (1-i)=2\pi-\pi/4=7\pi/4. Thus \displaystyle \ 1-i=\sqrt{2}\,\bigl(\cos(7\pi/4)+i\sin(7\pi/4)\,\bigr).
  4. \displaystyle \,2\sqrt{3}+2i

    The absolute value is the easiest to calculate
    \displaystyle |\,2\sqrt{3}+2i\,|=\sqrt{(2\sqrt{3}\,)^2+2^2}=\sqrt{16}=4\,\mbox{.}

    If we call the argument \displaystyle \alpha then it satisfies the relationship

    \displaystyle \tan\alpha=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}}

    and since the number is in the first quadrant (positive real and imaginary parts) one gets \displaystyle \alpha=\pi/6 and we have that

    \displaystyle 2\sqrt{3}+2i=4\bigl(\cos\frac{\pi}{6}+i\,\sin\frac{\pi}{6}\bigr)\,\mbox{.}

[Image]


Multiplication and division of polar forms

The big advantage of having the complex numbers written in polar form is that multiplication and division then becomes very easy to perform. For arbitrary complex numbers \displaystyle z=|\,z\,|\,(\cos\alpha+i\sin\alpha) and \displaystyle w=|\,w\,|\,(\cos\beta+i\sin\beta), it can be shown using the trigonometric formulas for addition that

\displaystyle \begin{align*}z\, w&=|\,z\,|\,|\,w\,|\,\bigl(\cos(\alpha+\beta)+i\,\sin(\alpha+\beta)\bigr)\,\mbox{,}\\[4pt] \frac{z}{w}&=\frac{|z|}{|w|}\bigl(\cos(\alpha-\beta)+i\,\sin(\alpha-\beta)\bigr)\,\mbox{.}\end{align*}

When multiplying complex numbers, the absolute values are multiplied, while the arguments are added. For division of complex numbers, absolute values are divided and the arguments subtracted. This can be summarised as:

\displaystyle |\,z\, w\,|=|\,z\,|\, |\,w\,|\quad \mbox{and}\quad \arg(z\, w)=\arg\,z + \arg\,w\,\mbox{,}
\displaystyle \Bigl|\,\frac{z}{w}\,\Bigr|=\frac{|\,z\,|}{|\,w\,|}\quad\quad\quad\; \mbox{ and}\quad \arg\Bigl(\frac{z}{w}\Bigr)=\arg \,z - \arg\,w\,\mbox{.}

In the complex plane this means that multiplication of \displaystyle z with \displaystyle w causes \displaystyle z to be stretched by a factor \displaystyle |\,w\,| and rotated anticlockwise by an angle \displaystyle \arg\,w.


[Image]

[Image]


Beispiel 6


Simplify the following expressions by writing them in polar form:

  1. \displaystyle \Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl( -\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr)

    We write the numerator and denominator in polar form
    \displaystyle \begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\times\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\times\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*}

    and it follows that

    \displaystyle \begin{align*}&\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl(-\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr) = \smash{\frac{\cos\dfrac{7\pi}{4}+i\,\sin\dfrac{7\pi}{4}\vphantom{\Biggl(}}{\cos\dfrac{3\pi}{4}+i\,\sin\dfrac{3\pi}{4}\vphantom{\Biggl)}}}\\[16pt] &\qquad\quad{}= \cos\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigl)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigr)= \cos\pi+i\,\sin\pi=-1\,\mbox{.}\end{align*}

  2. \displaystyle (-2-2i)(1+i)

    The factors in the expression are written in polar form
    \displaystyle \begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{,}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{.}\end{align*}

    Multiplication in polar form gives

    \displaystyle \begin{align*}(-2-2i)(1+i)&=\sqrt8 \times \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}

Beispiel 7


  1. Simplify \displaystyle iz and \displaystyle \frac{z}{i} if \displaystyle \ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\Bigr). Antwort in polar form.

    Since \displaystyle \ i=1\times \left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\ it follows that
    \displaystyle \begin{align*} iz &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\Bigr)\,\mbox{,}\\[4pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)\,\Bigr) = 2\Bigl(\cos\frac{-\pi}{3}+i\,\sin\frac{-\pi}{3}\Bigr)\,\mbox{.}\end{align*}

  2. Simplify \displaystyle iz and \displaystyle \frac{z}{i} if \displaystyle \ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)\,. Antwort in polar form.

    Rewriting \displaystyle i in polar form gives
    \displaystyle \begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}

We see that multiplying by i leads to an anticlockwise rotation \displaystyle \pi/2, while division with i results in a clockwise rotation \displaystyle \pi/2.

[Image]

[Image]

Complex numbers z, iz and z/i when |z| = 2 and arg z = π/6. Complex numbers z, iz and z/i when |z| = 3 and arg z = 7π/4.