Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Solution 3.3:2a moved to Lösung 3.3:2a: Robot: moved page)
Aktuelle Version (12:37, 14. Okt. 2011) (bearbeiten) (rückgängig)
 
(Der Versionsvergleich bezieht 9 dazwischen liegende Versionen mit ein.)
Zeile 1: Zeile 1:
-
An equation of the type "<math>z^{n} = \text{a complex number}</math>" is called a binomial equation and these are usually solved by going over to polar form and using de Moivre's formula.
+
Eine Gleichung der Form "<math>z^{n} = \text{Eine komplexe Zahl}</math>" löst man, indem man alle Zahlen in Polarform bringt und den Moivreschen Satz benutzt.
-
We start by writing <math>z</math> and <math>1</math> in polar form
+
Wir bringen zuerst <math>z</math> und <math>1</math> in Polarform
{{Abgesetzte Formel||<math>\begin{align}
{{Abgesetzte Formel||<math>\begin{align}
Zeile 8: Zeile 8:
\end{align}</math>}}
\end{align}</math>}}
-
The equation then becomes
+
Wir erhalten die Gleichung
{{Abgesetzte Formel||<math>r^4(\cos 4\alpha + i\sin 4\alpha) = 1\,(\cos 0 + i\sin 0)\,,</math>}}
{{Abgesetzte Formel||<math>r^4(\cos 4\alpha + i\sin 4\alpha) = 1\,(\cos 0 + i\sin 0)\,,</math>}}
-
where we have used de Moivre's formula on the left-hand side. In order that both sides are equal, they must have the same magnitude and the same argument to within a multiple of <math>2\pi</math>, i.e.
+
wobei wir den Moivreschen Satz auf der linken Seite benutzt haben. Damit die rechte und die linke Seite gleich sind, müssen deren Beträge gleich sein und auch deren Argumente dürfen sich nur durch ein Vielfaches von <math>2\pi</math> unterscheiden
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
r^{4} &= 1\,,\\[5pt]
r^{4} &= 1\,,\\[5pt]
-
4\alpha &= 0+2n\pi\,,\quad (\text{n is an arbitrary integer})\,\textrm{.}
+
4\alpha &= 0+2n\pi\,,\quad (\text{n ist eine beliebige ganze Zahl})\textrm{.}
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
This means that
+
Also ist
{{Abgesetzte Formel||<math>\left\{\begin{align}
{{Abgesetzte Formel||<math>\left\{\begin{align}
r &= 1\,,\\[5pt]
r &= 1\,,\\[5pt]
-
\alpha &= \frac{n\pi}{2}\,,\quad \text{(n is an arbitrary integer).}
+
\alpha &= \frac{n\pi}{2}\,,\quad \text{(n ist eine beliebige ganze Zahl).}
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
The solutions are thus (in polar form)
+
Und die Wurzeln sind
-
{{Abgesetzte Formel||<math>z = 1\cdot\Bigl(\cos\frac{n\pi}{2} + i\sin\frac{n\pi}{2}\Bigr)\,,\quad\text{for }n=0,\ \pm 1,\ \pm 2,\ldots</math>}}
+
{{Abgesetzte Formel||<math>z = 1\cdot\Bigl(\cos\frac{n\pi}{2} + i\sin\frac{n\pi}{2}\Bigr)\,,\quad\text{für }n=0, 1, 2, 3</math>.}}
-
but observe that the argument on the right-hand side essentially takes only four different values <math>0</math>, <math>\pi/2</math>, <math>\pi</math> and <math>3\pi/2\,</math>, because other values of <math>n</math> give some of these values plus/minus a multiple of <math>2\pi\,</math>.
+
Wir erhalten aber nur vier unterschiedliche Winkel, nämlich <math>0</math>, <math>\pi/2</math>, <math>\pi</math> und <math>3\pi/2</math>, da jeder anderer Winkel sich nur durch ein Vielfaches von <math>2\pi\,</math> von diesen Winkeln unterscheidet.
-
The equation's solutions are therefore
+
Die Wurzeln sind daher
{{Abgesetzte Formel||<math>z=\left\{\begin{align}
{{Abgesetzte Formel||<math>z=\left\{\begin{align}
Zeile 48: Zeile 48:
\end{align}\right.</math>}}
\end{align}\right.</math>}}
-
 
+
Wir sehen, dass die Lösungen ein Quadrat bilden, wie wir es erwarten, da wir 4 verschiedene Lösungen haben.
-
Note: If we mark these solutions on the complex number plane, we see that they are corners in a regular quadrilateral.
+
[[Image:3_3_2_a.gif|center]]
[[Image:3_3_2_a.gif|center]]

Aktuelle Version

Eine Gleichung der Form "zn=Eine komplexe Zahl" löst man, indem man alle Zahlen in Polarform bringt und den Moivreschen Satz benutzt.

Wir bringen zuerst z und 1 in Polarform

z1=r(cos+isin)=1(cos0+isin0).

Wir erhalten die Gleichung

r4(cos4+isin4)=1(cos0+isin0)

wobei wir den Moivreschen Satz auf der linken Seite benutzt haben. Damit die rechte und die linke Seite gleich sind, müssen deren Beträge gleich sein und auch deren Argumente dürfen sich nur durch ein Vielfaches von 2 unterscheiden

r44=1=0+2n(n ist eine beliebige ganze Zahl). 

Also ist

r=1=2n(n ist eine beliebige ganze Zahl).

Und die Wurzeln sind

z=1cos2n+isin2nfür n=0123 .

Wir erhalten aber nur vier unterschiedliche Winkel, nämlich 0, 2, und 32, da jeder anderer Winkel sich nur durch ein Vielfaches von 2 von diesen Winkeln unterscheidet.

Die Wurzeln sind daher

z=1(cos0+isin0)1(cos(2)+isin(2))1(cos+isin)1(cos(32)+isin(32))=1i1i.

Wir sehen, dass die Lösungen ein Quadrat bilden, wie wir es erwarten, da wir 4 verschiedene Lösungen haben.