3.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-Lösning +Solution))
K (Robot: Automated text replacement (-{{Ej vald flik +{{Not selected tab))
Zeile 2: Zeile 2:
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
{| border="0" cellspacing="0" cellpadding="0" height="30" width="100%"
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
-
{{Ej vald flik|[[3.1 Complex number calculations|Theory]]}}
+
{{Not selected tab|[[3.1 Complex number calculations|Theory]]}}
{{Vald flik|[[3.1 Exercises|Exercises]]}}
{{Vald flik|[[3.1 Exercises|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  

Version vom 08:17, 17. Sep. 2008

       Theory    
  1. REDIRECT Template:Gewählter Tab
 

Exercise 3.1:1

Write in the form \displaystyle \,a+bi\,, where \displaystyle \,a\, and \displaystyle \,b\, are real numbers

a) \displaystyle (5-2i)+(3+5i) b) \displaystyle 3i -(2-i)
c) \displaystyle i(2+3i) d) \displaystyle (3-2i)(7+5i)
e) \displaystyle (1+i)(2-i)^2 f) \displaystyle i^{\,20} + i^{\,11}

Exercise 3.1:2

Write in the form \displaystyle \,a+bi\,, where \displaystyle \,a\, and \displaystyle \,b\, are real numbers,

a) \displaystyle \displaystyle\frac{3-2i}{1+i} b) \displaystyle \displaystyle\frac{3i}{4-6i} - \displaystyle\frac{1+i}{3+2i}
c) \displaystyle \displaystyle\frac{(2-i\sqrt{3}\,)^2}{1+i\sqrt{3}} d) \displaystyle \displaystyle\frac{5-\displaystyle\frac{1}{1+i}}{3i + \displaystyle\frac{i}{2-3i}}

Exercise 3.1:3

Determine the real number \displaystyle \,a\, such that the expression \displaystyle \ \displaystyle\frac{3+i}{2+ai}\ becomes purely imaginary (i.e. the real part equals zero).


Exercise 3.1:4

Solve the equations

a) \displaystyle z+3i=2z-2 b) \displaystyle (2-i) z= 3+2i
c) \displaystyle iz+2= 2z-3 d) \displaystyle (2+i) \overline{z} = 1+i
e) \displaystyle \displaystyle\frac{iz+1}{z+i} = 3+i f) \displaystyle (1+i)\overline{z}+iz = 3+5i