Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.1:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
If we write
+
If we write <math>\sqrt{x}</math> in power form <math>x^{1/2}</math>, we see that the square root is a function having the appearance of <math>x^n</math> and its derivative is therefore equal to
-
<math>\sqrt{x}</math>
+
-
in power form
+
-
<math>x^{{1}/{2}\;}</math>, we see that the square root is a function having the appearance of
+
-
<math>x^{n}</math>
+
-
and its derivative is therefore equal to
+
-
 
+
{{Displayed math||<math>f^{\,\prime}(x) = \frac{d}{dx}\,\sqrt{x} = \frac{d}{dx}\,x^{1/2} = \tfrac{1}{2}x^{1/2-1} = \tfrac{1}{2}x^{-1/2}\,\textrm{.}</math>}}
-
<math>{f}'\left( x \right)=\frac{d}{dx}\sqrt{x}=\frac{d}{dx}x^{{1}/{2}\;}=\frac{1}{2}x^{\frac{1}{2}-1}=\frac{1}{2}x^{-\frac{1}{2}}</math>
+
The answer can also be written as
The answer can also be written as
 +
{{Displayed math||<math>f^{\,\prime}(x) = \frac{1}{2\sqrt{x}}</math>}}
-
<math>{f}'\left( x \right)=\frac{1}{2\sqrt{x}}</math>
+
since <math>x^{-1/2} = \bigl(x^{1/2}\bigr)^{-1} = \bigl(\sqrt{x}\,\bigr)^{-1} = \frac{1}{\sqrt{x}}\,</math>.
-
 
+
-
 
+
-
because
+
-
<math>x^{-\frac{1}{2}}=\left( x^{\frac{1}{2}} \right)^{-1}=\left( \sqrt{x} \right)^{-1}=\frac{1}{\sqrt{x}}</math>
+

Version vom 11:58, 14. Okt. 2008

If we write x  in power form x12 , we see that the square root is a function having the appearance of xn and its derivative is therefore equal to

f(x)=ddxx=ddxx12=21x121=21x12. 

The answer can also be written as

f(x)=12x

since x12=x121=x1=1x .