Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.2:5c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product
+
Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product <math>(\sqrt{3}+i)(1-i)</math> therefore has an argument which is the sum of the argument for the <math>\sqrt{3}+i</math> and <math>1-i</math>, i.e.
-
<math>\left( \sqrt{3}+i \right)\left( 1-i \right)</math>
+
-
therefore has an argument which is the sum of the argument for the
+
-
<math>\sqrt{3}+i</math>
+
-
and
+
-
<math>1-i</math>, i.e.
+
 +
{{Displayed math||<math>\arg \bigl((\sqrt{3}+i)(1-i)\bigr) = \arg (\sqrt{3}+i) + \arg (1-i)\,\textrm{.}</math>}}
-
<math>\arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right)</math>
+
By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry.
-
 
+
-
 
+
-
By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry:
+
-
 
+
[[Image:3_2_5_c.gif|center]]
[[Image:3_2_5_c.gif|center]]
-
 
+
(Because <math>1-i</math> lies in the fourth quadrant, the argument equals
-
(Because
+
<math>-\beta</math> and not <math>\beta</math>.)
-
<math>1-i</math>
+
-
lies in the fourth quadrant, the argument equals
+
-
<math>-\beta </math>
+
-
and not
+
-
<math>\beta </math>.)
+
Hence,
Hence,
 +
{{Displayed math||<math>\arg \bigl((\sqrt{3}+i)(1-i)\bigr) = \arg (\sqrt{3}+i) + \arg (1-i) = \frac{\pi}{6} - \frac{\pi}{4} = -\frac{\pi}{12}\,\textrm{.}</math>}}
-
<math>\begin{align}
 
-
& \arg \left( \left( \sqrt{3}+i \right)\left( 1-i \right) \right)=\arg \left( \sqrt{3}+i \right)+\arg \left( 1-i \right) \\
 
-
& =\frac{\pi }{6}-\frac{\pi }{4}=-\frac{\pi }{12} \\
 
-
\end{align}</math>
 
- 
- 
-
NOTE: if you prefer to give the argument between
 
-
<math>0</math>
 
-
and
 
-
<math>2\pi </math>, then the answer is
 
 +
Note: If you prefer to give the argument between <math>0</math> and <math>2\pi </math>, then the answer is
-
<math>-\frac{\pi }{12}+2\pi =\frac{-\pi +24\pi }{12}=\frac{23\pi }{12}</math>
+
{{Displayed math||<math>-\frac{\pi}{12}+2\pi = \frac{-\pi+24\pi}{12} = \frac{23\pi}{12}\,\textrm{.}</math>}}

Version vom 12:39, 29. Okt. 2008

Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product (3+i)(1i)  therefore has an argument which is the sum of the argument for the 3+i  and 1i, i.e.

arg(3+i)(1i)=arg(3+i)+arg(1i). 

By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry.

(Because 1i lies in the fourth quadrant, the argument equals and not .)

Hence,

arg(3+i)(1i)=arg(3+i)+arg(1i)=64=12. 


Note: If you prefer to give the argument between 0 and 2, then the answer is

12+2=12+24=1223.