Processing Math: Done
Lösung 3.2:5c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product <math>(\sqrt{3}+i)(1-i)</math> therefore has an argument which is the sum of the argument for the <math>\sqrt{3}+i</math> and <math>1-i</math>, i.e. | Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product <math>(\sqrt{3}+i)(1-i)</math> therefore has an argument which is the sum of the argument for the <math>\sqrt{3}+i</math> and <math>1-i</math>, i.e. | ||
- | {{ | + | {{Abgesetzte Formel||<math>\arg \bigl((\sqrt{3}+i)(1-i)\bigr) = \arg (\sqrt{3}+i) + \arg (1-i)\,\textrm{.}</math>}} |
By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry. | By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry. | ||
Zeile 12: | Zeile 12: | ||
Hence, | Hence, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\arg \bigl((\sqrt{3}+i)(1-i)\bigr) = \arg (\sqrt{3}+i) + \arg (1-i) = \frac{\pi}{6} - \frac{\pi}{4} = -\frac{\pi}{12}\,\textrm{.}</math>}} |
Note: If you prefer to give the argument between <math>0</math> and <math>2\pi </math>, then the answer is | Note: If you prefer to give the argument between <math>0</math> and <math>2\pi </math>, then the answer is | ||
- | {{ | + | {{Abgesetzte Formel||<math>-\frac{\pi}{12}+2\pi = \frac{-\pi+24\pi}{12} = \frac{23\pi}{12}\,\textrm{.}</math>}} |
Version vom 13:09, 10. Mär. 2009
Geometrically, the multiplication of two complex numbers means that there magnitudes are multiplied and their arguments are added. The product 3+i)(1−i)
3+i
![]() ![]() ![]() ![]() |
By drawing the factors in the complex plane, we can determine relatively easily the argument using simple trigonometry.
(Because
Hence,
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Note: If you prefer to give the argument between
![]() ![]() ![]() ![]() ![]() |