Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.2:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
K (Solution 2.2:3d moved to Lösung 2.2:3d: Robot: moved page)

Version vom 10:23, 11. Mär. 2009

Observe that the derivative of the denominator is, for the most part, equal to the numerator,

(x2+2x+2)=2x+2=2(x+1)

so we can rewrite the integral as

21x2+2x+2(x2+2x+2)dx. 

The substitution u=x2+2x+2 will therefore simplify the integral considerably,

x+1x2+2x+2dx=udu=x2+2x+2=(x2+2x+2)dx=2(x+1)dx=21udu=21lnu+C=21lnx2+2x+2+C.


Note: By completing the square

x2+2x+2=(x+1)212+2=(x+1)2+1

we see that x2+2x+2 is always greater than or equal to 1, so we can take away the absolute sign around the argument in ln and answer with

21ln(x2+2x+2)+C.