3.4 Komplexe Polynome
Aus Online Mathematik Brückenkurs 2
K |
|||
Zeile 16: | Zeile 16: | ||
'''Lernziele:''' | '''Lernziele:''' | ||
- | Nach diesem Abschnitt | + | Nach diesem Abschnitt solltest Du folgendes können: |
* Polynomdivision ausführen. | * Polynomdivision ausführen. | ||
Zeile 29: | Zeile 29: | ||
{{Abgesetzte Formel||<math>a_nx^n+a_{n-1}x^{n-1} + \ldots + a_2x^2 + a_1x+a_0</math>}} | {{Abgesetzte Formel||<math>a_nx^n+a_{n-1}x^{n-1} + \ldots + a_2x^2 + a_1x+a_0</math>}} | ||
- | + | wobei <math>n</math> eine ganze Zahl ist, nennt man ''Polynome'' vom Grad <math>n</math> und der Variable <math>x</math>. Die Zahl <math>a_1</math> ist der Koeffizient von <math>x</math>, <math>a_2</math> ist der Koeffizient von <math>x^2</math>, etc. Die Zahl <math>a_0</math> ist die Konstante des Polynoms. | |
Zeile 38: | Zeile 38: | ||
''' Beispiel 1''' | ''' Beispiel 1''' | ||
- | + | Vergleiche folgende Zahl in der Basis 10, | |
{{Abgesetzte Formel||<math>1353= 1\times 10^3 + 3\times 10^2 + 5\times 10 + 3</math>}} | {{Abgesetzte Formel||<math>1353= 1\times 10^3 + 3\times 10^2 + 5\times 10 + 3</math>}} | ||
- | Mit dem Polynom <math>x</math> | + | Mit dem Polynom <math>p(x)</math> |
{{Abgesetzte Formel||<math>x^3 + 3x^2 + 5x + 3 = 1\times x^3 + 3\times x^2 + 5\times x + 3</math>}} | {{Abgesetzte Formel||<math>x^3 + 3x^2 + 5x + 3 = 1\times x^3 + 3\times x^2 + 5\times x + 3</math>}} | ||
Zeile 54: | Zeile 54: | ||
</div> | </div> | ||
- | Wenn <math>p(x)</math> ein Polynom | + | Wenn <math>p(x)</math> ein Polynom vom Grad <math>n</math> ist, ist <math>p(x)=0</math> eine ''Polynomgleichung'' vom Grad <math>n</math>. Falls <math>p(a)=0</math> für die Zahl <math>x=a</math>, nennt man <math>x=a</math> eine ''Wurzel'' oder Lösung der Gleichung. Man sagt auch, dass <math>x=a</math> eine Nullstelle von <math>p(x)</math> ist. |
Das Beispiel zeigt, dass Polynome wie ganze Zahlen dividiert werden können. Meistens erhält man nach einer Polynomdivision nicht ein ganzes Polynom. Dies ist wie bei den ganzen Zahlen, wo zum Beispiel | Das Beispiel zeigt, dass Polynome wie ganze Zahlen dividiert werden können. Meistens erhält man nach einer Polynomdivision nicht ein ganzes Polynom. Dies ist wie bei den ganzen Zahlen, wo zum Beispiel | ||
Zeile 84: | Zeile 84: | ||
- | + | Berechne <math>\ \frac{x^3 + x^2 -x +4}{x+2}\,</math> durch Polynomdivision. | |
Zeile 132: | Zeile 132: | ||
- | Das Polynom <math>p(x) = x^2-6x+8</math> kann | + | Das Polynom <math>p(x) = x^2-6x+8</math> kann so |
{{Abgesetzte Formel||<math>x^2-6x+8 = (x-2)(x-4)</math>}} | {{Abgesetzte Formel||<math>x^2-6x+8 = (x-2)(x-4)</math>}} | ||
Zeile 144: | Zeile 144: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li> | + | <li> Zerlege das Polynom <math>\ x^2-3x-10\,</math> in seine Faktoren. |
<br> | <br> | ||
<br> | <br> | ||
Zeile 154: | Zeile 154: | ||
</li> | </li> | ||
- | <li> | + | <li> Zerlege das Polynom <math>\ x^2+6x+9\,</math> in seine Faktoren. |
<br> | <br> | ||
<br> | <br> | ||
- | Dieses Polynom hat eine doppelte | + | Dieses Polynom hat eine doppelte Nullstelle |
{{Abgesetzte Formel||<math>x= -3 \pm \sqrt{\smash{(-3)^2 -9}\vphantom{i^2}} = -3</math>}} | {{Abgesetzte Formel||<math>x= -3 \pm \sqrt{\smash{(-3)^2 -9}\vphantom{i^2}} = -3</math>}} | ||
Zeile 164: | Zeile 164: | ||
</li> | </li> | ||
- | <li> | + | <li>Zerlege das Polynom <math>\ x^2 -4x+5\,</math> in seine Faktoren. |
<br> | <br> | ||
<br> | <br> | ||
Zeile 171: | Zeile 171: | ||
{{Abgesetzte Formel||<math>x= 2 \pm \sqrt{2^2 -5} = 2\pm \sqrt{-1} = 2\pm i</math>}} | {{Abgesetzte Formel||<math>x= 2 \pm \sqrt{2^2 -5} = 2\pm \sqrt{-1} = 2\pm i</math>}} | ||
- | + | die Faktoren sind also <math>\ (x-(2-i))(x-(2+i))\,</math>. | |
</li> | </li> | ||
Zeile 182: | Zeile 182: | ||
- | + | Bestimme ein kubisches Polynom mit den Nullstellen <math>1</math>, <math>-1</math> und <math>3</math>. | |
<br> | <br> | ||
<br> | <br> | ||
Zeile 196: | Zeile 196: | ||
Am Anfang dieses Abschnittes haben wir die komplexen Zahlen eingeführt, um quadratische Gleichungen wie <math>x^2=-1</math> zu lösen. Wir können uns fragen, ob man mit den komplexen Zahlen alle Polynomgleichungen lösen kann oder ob man dazu andere Zahlen als die komplexen benötigt. Die Antwort ist, dass die komplexen Zahlen ausreichen. Der deutsche Mathematiker Carl Friedrich Gauss bewies im Jahr 1799 den ''Fundamentalsatz der Algebra'': | Am Anfang dieses Abschnittes haben wir die komplexen Zahlen eingeführt, um quadratische Gleichungen wie <math>x^2=-1</math> zu lösen. Wir können uns fragen, ob man mit den komplexen Zahlen alle Polynomgleichungen lösen kann oder ob man dazu andere Zahlen als die komplexen benötigt. Die Antwort ist, dass die komplexen Zahlen ausreichen. Der deutsche Mathematiker Carl Friedrich Gauss bewies im Jahr 1799 den ''Fundamentalsatz der Algebra'': | ||
- | <div class="regel"> | + | <div class="regel"> |
'''Fundamentalsatz der Algebra''' | '''Fundamentalsatz der Algebra''' | ||
Zeile 217: | Zeile 217: | ||
- | + | Zeige, dass das Polynom <math>p(x)=x^4-4x^3+6x^2-4x+5</math> die Nullstellen <math>x=i</math> und <math>x = 2-i</math> hat. Bestimme damit alle Nullstellen. | |
Zeile 239: | Zeile 239: | ||
</div> | </div> | ||
- | Eine | + | Eine Folgerung aus dem Fundamentalsatz der Algebra ist, dass alle Polynome in lineare komplexe Faktoren zerlegt werden können. Dies gilt natürlich auch für Polynome mit reellen Koeffizienten, nur können wir dann die konjugiert komplexen Faktoren zu reellen quadratischen Faktoren multiplizieren. Das Polynom wird in diesem Fall aus linearen und quadratischen Faktoren bestehen. |
Zeile 245: | Zeile 245: | ||
''' Beispiel 7''' | ''' Beispiel 7''' | ||
- | + | Zeige, dass <math>x=1</math> eine Nullstelle von <math>p(x)= x^3+x^2-2</math> ist. Zerlegen Sie danach <math>p(x)</math> in reelle Polynome und zerlegen sie dann schließlich <math>p(x)</math> in lineare Faktoren. | |
Version vom 13:40, 3. Aug. 2009
Theorie | Übungen |
Inhalt:
- Polynomdivision
- Fundamentalsatz der Algebra
Lernziele:
Nach diesem Abschnitt solltest Du folgendes können:
- Polynomdivision ausführen.
- Das Verhältnis zwischen den Faktoren und Nullstellen eines Polynomes verstehen.
- Wissen, dass ein Polynom mit Grad n, n Nullstellen hat.
- Wissen, dass Polynome mit reellen Koeffizienten konjugiert komplexe Nullstellen haben.
Polynome
Ausdrücke in der Form
wobei
Polynome haben viele Eigenschaften gemeinsam mit den ganzen Zahlen und sind deshalb in der Mathematik höchst interessant.
Beispiel 1
Vergleiche folgende Zahl in der Basis 10,
![]() ![]() ![]() |
Mit dem Polynom
![]() ![]() ![]() |
und die folgenden Divisionen,
111353=123 nachdem1353=123 ,11
x+1x3+3x2+5x+3=x2+2x+3 nachdemx3+3x2+5x+3=(x2+2x+3)(x+1) .
Wenn
Das Beispiel zeigt, dass Polynome wie ganze Zahlen dividiert werden können. Meistens erhält man nach einer Polynomdivision nicht ein ganzes Polynom. Dies ist wie bei den ganzen Zahlen, wo zum Beispiel
Man kann auch schreiben, dass 5+2
Gleichermassen gilt, dass wenn
oder
Falls der Rest null wird, also wenn
oder
Polynomdivision
Wenn
Beispiel 2
Berechne
Der erster Schritt ist, dass wir einen passenden
Jetzt ist es offenbar, dass
Jetzt addieren und subtrahieren wir einen passenden
Im letzten Schritt addieren und subtrahieren wir eine Konstante zum/vom Zähler
und wir erhalten
Der Quotient ist also
Das Verhältnis zwischen Faktoren und Nullstellen
Wenn
Nachdem 0=0
\displaystyle (x-a) ist ein Teiler vom Polynom \displaystyle p(x) genau dann, wenn \displaystyle x=a eine Nullstelle von \displaystyle p(x) ist.
Beachten Sie, dass dieser Satz in beide Richtungen gilt. Wissen wir, dass \displaystyle x=a eine Nullstelle von \displaystyle p(x) ist, wissen wir also auch, dass \displaystyle p(x) durch \displaystyle (x-a) teilbar ist.
Beispiel 3
Das Polynom \displaystyle p(x) = x^2-6x+8 kann so
\displaystyle x^2-6x+8 = (x-2)(x-4) |
in Faktoren zerlegt werden und hat daher die Nullstellen \displaystyle x=2 und \displaystyle x=4 (und keine anderen Nullstellen). Dies sind genau die Nullstellen, die wir erhalten, wenn wir die Gleichung \displaystyle \ x^2-6x+8 = 0\, lösen.
Beispiel 4
- Zerlege das Polynom \displaystyle \ x^2-3x-10\, in seine Faktoren.
Indem wir die Nullstellen des Polynoms bestimmen, erhalten wir auch die Faktoren. Die quadratische Gleichung \displaystyle \ x^2-3x-10=0\ hat die Lösungen\displaystyle x= \frac{3}{2} \pm \sqrt{\Bigl(\frac{3}{2}\Bigr)^2 - (-10)} = \frac{3}{2} \pm \frac{7}{2}\,\mbox{,} also. \displaystyle x=-2 und \displaystyle x=5. Daher ist \displaystyle \ x^2-3x-10=(x-(-2))(x-5)=(x+2)(x-5)\,.
- Zerlege das Polynom \displaystyle \ x^2+6x+9\, in seine Faktoren.
Dieses Polynom hat eine doppelte Nullstelle\displaystyle x= -3 \pm \sqrt{\smash{(-3)^2 -9}\vphantom{i^2}} = -3 und daher ist \displaystyle \ x^2+6x+9=(x-(-3))(x-(-3))=(x+3)^2\,.
- Zerlege das Polynom \displaystyle \ x^2 -4x+5\, in seine Faktoren.
Dieses Polynom hat zwei komplexe Wurzeln\displaystyle x= 2 \pm \sqrt{2^2 -5} = 2\pm \sqrt{-1} = 2\pm i die Faktoren sind also \displaystyle \ (x-(2-i))(x-(2+i))\,.
Beispiel 5
Bestimme ein kubisches Polynom mit den Nullstellen \displaystyle 1, \displaystyle -1 und \displaystyle 3.
Das Polynom hat die Faktoren \displaystyle (x-1), \displaystyle (x+1) und \displaystyle (x-3). Multiplizieren wir diese Faktoren, erhalten wir das ersuchte Polynom
\displaystyle (x-1)(x+1)(x-3) = (x^2-1)(x-3)= x^3 -3x^2 -x+3\,\mbox{.} |
Fundamentalsatz der Algebra
Am Anfang dieses Abschnittes haben wir die komplexen Zahlen eingeführt, um quadratische Gleichungen wie \displaystyle x^2=-1 zu lösen. Wir können uns fragen, ob man mit den komplexen Zahlen alle Polynomgleichungen lösen kann oder ob man dazu andere Zahlen als die komplexen benötigt. Die Antwort ist, dass die komplexen Zahlen ausreichen. Der deutsche Mathematiker Carl Friedrich Gauss bewies im Jahr 1799 den Fundamentalsatz der Algebra:
Fundamentalsatz der Algebra
Jedes Polynom mit dem Grad \displaystyle n\ge1 und komplexen Koeffizienten hat mindestens eine komplexe Nullstelle.
Nachdem aber jede Nullstelle einem Faktor im Polynom entspricht, können wir das Gesetz erweitern:
Jedes Polynom mit dem Grad \displaystyle n\ge1 hat genau \displaystyle n Nullstellen, wenn man jede Nullstelle mit seiner Multiplizität rechnet.
(Multiplizität bedeutet, dass eine doppelte Nullstelle zweimal zählt, eine dreifache Nullstelle dreimal. etc.)
Beachten Sie, dass der Satz nur sagt, dass komplexe Nullstellen existieren, und nicht wie man sie findet. Im allgemeinen ist es sehr schwierig, die Nullstellen eines Polynomes zu finden. Wenn man die Nullstellen von Polynomen mit reellen Koeffizienten sucht, hilft uns das Wissen, dass die Nullstellen immer in konjugiert komplexen Paaren auftreten.
Beispiel 6
Zeige, dass das Polynom \displaystyle p(x)=x^4-4x^3+6x^2-4x+5 die Nullstellen \displaystyle x=i und \displaystyle x = 2-i hat. Bestimme damit alle Nullstellen.
Gegeben ist
\displaystyle \begin{align*} p(i) &= i^4- 4i^3 +6i^2-4i+5 = 1+4i-6-4i+5=0\,\mbox{,}\\ p(2-i) &= (2-i)^4 -4(2-i)^3 + 6(2-i)^2 - 4(2-i) +5\,\mbox{.}\end{align*} |
Um den letzten Ausdruck zu berechnen, müssen wir die Quadrate berechnen:
\displaystyle \begin{align*} (2-i)^2 &= 4-4i+i^2 = 3-4i\,\mbox{,}\\ (2-i)^3 &= (3-4i)(2-i) = 6-3i-8i+4i^2 = 2-11i\,\mbox{,}\\ (2-i)^4 &= (2-11i)(2-i) = 4-2i-22i+11i^2= -7-24i\,\mbox{.}\end{align*} |
Dies ergibt
\displaystyle \begin{align*} p(2-i) &= -7-24i-4(2-11i)+6(3-4i) -4(2-i) +5\\ &= -7-24i-8+44i+18-24i-8+4i+5=0\,\mbox{,}\end{align*} |
und daher sind \displaystyle i und \displaystyle 2-i Nullstellen des Polynoms.
Nachdem das Polynom reelle Koeffizienten hat, können wir direkt sagen, dass die anderen Nullstellen die konjugiert komplexen Nullstellen sind, also \displaystyle z=-i und \displaystyle z=2+i.
Eine Folgerung aus dem Fundamentalsatz der Algebra ist, dass alle Polynome in lineare komplexe Faktoren zerlegt werden können. Dies gilt natürlich auch für Polynome mit reellen Koeffizienten, nur können wir dann die konjugiert komplexen Faktoren zu reellen quadratischen Faktoren multiplizieren. Das Polynom wird in diesem Fall aus linearen und quadratischen Faktoren bestehen.
Beispiel 7
Zeige, dass \displaystyle x=1 eine Nullstelle von \displaystyle p(x)= x^3+x^2-2 ist. Zerlegen Sie danach \displaystyle p(x) in reelle Polynome und zerlegen sie dann schließlich \displaystyle p(x) in lineare Faktoren.
Nachdem \displaystyle \ p(1)= 1^3 + 1^2 -2 = 0\ ist \displaystyle x=1 eine Nullstelle des Polynoms. Laut dem Fundamentalsatz der Algebra ist daher \displaystyle x-1 ein Faktor von \displaystyle p(x), also ist \displaystyle p(x) durch \displaystyle x-1 teilbar. Wir teilen daher \displaystyle p(x) durch \displaystyle x-1,
\displaystyle \begin{align*} \frac{x^3+x^2-2}{x-1} &= \frac{x^2(x-1)+2x^2-2}{x-1} = x^2 + \frac{2x^2-2}{x-1} = x^2 + \frac{2x(x-1) +2x -2}{x-1}\\[4pt] &= x^2 + 2x + \frac{2x-2}{x-1} = x^2 + 2x + \frac{2(x-1)}{x-1} = x^2 + 2x + 2\,\mbox{.}\end{align*} |
Also ist \displaystyle \ p(x)= (x-1)(x^2+2x+2)\,, und dies ist die Antwort auf die erste Frage.
Jetzt müssen wir nur noch \displaystyle x^2+2x+2 in seine Faktoren zerlegen. Die Gleichung \displaystyle x^2+2x+2=0 hat die Lösungen
\displaystyle x=-1\pm \sqrt{\smash{(-1)^2 -2}\vphantom{i^2}} = -1 \pm \sqrt{-1} = -1\pm i |
und daher hat das Polynom die komplexen linearen Faktoren;
\displaystyle \begin{align*} x^3+x^2-2 = (x-1)(x^2+2x+2) &= (x-1)(x-(-1+i))(x-(-1-i))\\ &= (x-1)(x+1-i)(x+1+i)\,\mbox{.}\end{align*} |