Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

1.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
(Translated links into English)
Zeile 3: Zeile 3:
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
{{Ej vald flik|[[1.1 Inledning till derivata|Theory]]}}
{{Ej vald flik|[[1.1 Inledning till derivata|Theory]]}}
-
{{Vald flik|[[1.1 Övningar|exercises]]}}
+
{{Vald flik|[[1.1 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
-
===exercise 1.1:1===
+
===Exercise 1.1:1===
<div class="ovning">
<div class="ovning">
{| width="100%"
{| width="100%"
Zeile 26: Zeile 26:
||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}}
||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}}
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.1:1|Lösning a|Lösning 1.1:1a|Lösning b|Lösning 1.1:1b|Lösning c|Lösning 1.1:1c}}
+
</div>{{#NAVCONTENT:Answer|Svar 1.1:1|Solution a|Lösning 1.1:1a|Solution b|Lösning 1.1:1b|Solution c|Lösning 1.1:1c}}
-
===exercise 1.1:2===
+
===Exercise 1.1:2===
<div class="ovning">
<div class="ovning">
Determine the derivative <math>f^{\,\prime}(x)</math> when
Determine the derivative <math>f^{\,\prime}(x)</math> when
Zeile 46: Zeile 46:
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math>
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 1.1:2|Lösning a|Lösning 1.1:2a|Lösning b|Lösning 1.1:2b|Lösning c|Lösning 1.1:2c|Lösning d|Lösning 1.1:2d|Lösning e|Lösning 1.1:2e|Lösning f|Lösning 1.1:2f}}
+
</div>{{#NAVCONTENT:Answer|Svar 1.1:2|Solution a|Lösning 1.1:2a|Solution b|Lösning 1.1:2b|Solution c|Lösning 1.1:2c|Solution d|Lösning 1.1:2d|Solution e|Lösning 1.1:2e|Solution f|Lösning 1.1:2f}}
-
===exercise 1.1:3===
+
===Exercise 1.1:3===
<div class="ovning">
<div class="ovning">
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds?
-
</div>{{#NAVCONTENT:Svar|Svar 1.1:3|Lösning |Lösning 1.1:3}}
+
</div>{{#NAVCONTENT:Answer|Svar 1.1:3|Solution |Lösning 1.1:3}}
-
===exercise 1.1:4===
+
===Exercise 1.1:4===
<div class="ovning">
<div class="ovning">
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>.
-
</div>{{#NAVCONTENT:Svar|Svar 1.1:4|Lösning |Lösning 1.1:4}}
+
</div>{{#NAVCONTENT:Answer|Svar 1.1:4|Solution |Lösning 1.1:4}}
-
===exercise 1.1:5===
+
===Exercise 1.1:5===
<div exercise ="ovning">
<div exercise ="ovning">
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>.
-
</div>{{#NAVCONTENT:Svar|Svar 1.1:5|Lösning |Lösning 1.1:5}}
+
</div>{{#NAVCONTENT:Answer|Svar 1.1:5|Solution |Lösning 1.1:5}}

Version vom 08:29, 21. Aug. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 1.1:1

The graph for f(x) is shown in the figure.

a) What are the signs of f(5) and f(1)?
b) For what values of x is f(x)=0?
c) In which interval(s) is f(x) negative?

(Each square in the grid of the figure has width and height 1.)

1.1 - Figur - Grafen till f(x) i övning 1.1:1

Exercise 1.1:2

Determine the derivative f(x) when

a) f(x)=x23x+1 b) f(x)=cosxsinx c) f(x)=exlnx
d) f(x)=x  e) f(x)=(x21)2 f) f(x)=cos(x+3)

Exercise 1.1:3

A small ball, that is released from a height of h=10m above the ground at time t=0, is at a height h(t)=102982t2 at time t (measured in seconds) What is the speed of the ball when it hits the grounds?

Exercise 1.1:4

Determine the equation for the tangent and normal to the curve y=x2 at the point (11).

Exercise 1.1:5

Determine all the points on the curve y=x2 which have a tangent that goes through the point (11).