Processing Math: Done
1.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
(Translated links into English) |
||
Zeile 3: | Zeile 3: | ||
| style="border-bottom:1px solid #000" width="5px" | | | style="border-bottom:1px solid #000" width="5px" | | ||
{{Ej vald flik|[[1.1 Inledning till derivata|Theory]]}} | {{Ej vald flik|[[1.1 Inledning till derivata|Theory]]}} | ||
- | {{Vald flik|[[1.1 Övningar| | + | {{Vald flik|[[1.1 Övningar|Exercises]]}} |
| style="border-bottom:1px solid #000" width="100%"| | | style="border-bottom:1px solid #000" width="100%"| | ||
|} | |} | ||
- | === | + | ===Exercise 1.1:1=== |
<div class="ovning"> | <div class="ovning"> | ||
{| width="100%" | {| width="100%" | ||
Zeile 26: | Zeile 26: | ||
||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}} | ||{{:1.1 - Figur - Grafen till f(x) i övning 1.1:1}} | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:1|Solution a|Lösning 1.1:1a|Solution b|Lösning 1.1:1b|Solution c|Lösning 1.1:1c}} |
- | === | + | ===Exercise 1.1:2=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine the derivative <math>f^{\,\prime}(x)</math> when | Determine the derivative <math>f^{\,\prime}(x)</math> when | ||
Zeile 46: | Zeile 46: | ||
|width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | |width="33%"| <math>f(x)= \cos (x+\pi/3)</math> | ||
|} | |} | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:2|Solution a|Lösning 1.1:2a|Solution b|Lösning 1.1:2b|Solution c|Lösning 1.1:2c|Solution d|Lösning 1.1:2d|Solution e|Lösning 1.1:2e|Solution f|Lösning 1.1:2f}} |
- | === | + | ===Exercise 1.1:3=== |
<div class="ovning"> | <div class="ovning"> | ||
A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | A small ball, that is released from a height of <math>h=10</math>m above the ground at time <math>t=0</math>, is at a height <math>h(t)=10-\displaystyle\frac{9{,}82}{2}\,t^2</math> at time <math>t</math> (measured in seconds) What is the speed of the ball when it hits the grounds? | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:3|Solution |Lösning 1.1:3}} |
- | === | + | ===Exercise 1.1:4=== |
<div class="ovning"> | <div class="ovning"> | ||
Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | Determine the equation for the tangent and normal to the curve <math>y=x^2</math> at the point <math>(1,1)</math>. | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:4|Solution |Lösning 1.1:4}} |
- | === | + | ===Exercise 1.1:5=== |
<div exercise ="ovning"> | <div exercise ="ovning"> | ||
Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | Determine all the points on the curve <math>y=-x^2</math> which have a tangent that goes through the point <math>(1,1)</math>. | ||
- | </div>{{#NAVCONTENT: | + | </div>{{#NAVCONTENT:Answer|Svar 1.1:5|Solution |Lösning 1.1:5}} |
Version vom 08:29, 21. Aug. 2008
|
Exercise 1.1:1
The graph for
(Each square in the grid of the figure has width and height 1.) | 1.1 - Figur - Grafen till f(x) i övning 1.1:1 |
Answer | Solution a | Solution b | Solution c
Exercise 1.1:2
Determine the derivative (x)
a) | | b) | | c) | |
d) | ![]() | e) | | f) | ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e | Solution f
Exercise 1.1:3
A small ball, that is released from a height of 82t2
Exercise 1.1:4
Determine the equation for the tangent and normal to the curve 1)
Exercise 1.1:5
Determine all the points on the curve 1)