Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.1:2b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.1:2b moved to Solution 3.1:2b: Robot: moved page)
Zeile 1: Zeile 1:
{{NAVCONTENT_START}}
{{NAVCONTENT_START}}
-
<center> [[Image:3_1_2b-1(2).gif]] </center>
+
The two terms do not have the same denominator, so it is not possible to subtract them directly. It is perhaps simplest to calculate each quotient individually and then subtract the result.
-
{{NAVCONTENT_STOP}}
+
 
-
{{NAVCONTENT_START}}
+
We multiply the top and bottom of each fraction by the complex conjugate of its denominator:
-
<center> [[Image:3_1_2b-2(2).gif]] </center>
+
 
 +
<math>\begin{align}\frac{3i}{4-6i}-\frac{1+i}{3+2i} &= \frac{3i(4+6i)}{(4-6i)(4+6i)}-\frac{(1+i)(3-2i)}{(3+2i)(3-2i)}\\
 +
&= \frac{3i\cdot 4 + 3i\cdot 6i}{(4^2-(6i)^2}-\frac{1\cdot 3 - 1\cdot 2i + i \cdot 3 - i\cdot 2i}{3^2-(2i)^2}\\
 +
&= \frac{12i + 18i^2}{16+36}-\frac{3 - 2i + 3i - 2i^2}{9+4}\\
 +
&= \frac{-18+12i}{52}-\frac{3 +(-2 + 3)i + 2}{13}\\
 +
&= \frac{-18+12i}{52}-\frac{5 +i}{13}\end{align}</math>
 +
 
 +
{{NAVCONTENT_STEP}}
 +
 
 +
 
 +
Then, we multiply the top and bottom of the last fraction by 4, so as to give make both fractions have the same denominator, and after that we subtract the numerators:
 +
 
 +
<math>\begin{align}\frac{-18+12i}{52}-\frac{(5 +i)\cdot 4}{13\cdot 4}&=\frac{-18+12i}{52}-\frac{20+4i}{52}\\
 +
&=\frac{-18+12i-20-4i}{52}\\
 +
&=\frac{-38+8i}{52}\\
 +
&=-\frac{19}{26}+\frac{2}{13}i.\end{align}</math>
 +
 
 +
 
{{NAVCONTENT_STOP}}
{{NAVCONTENT_STOP}}

Version vom 09:53, 23. Sep. 2008