Processing Math: Done
Lösung 3.1:2c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.1:2c moved to Solution 3.1:2c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
{{NAVCONTENT_START}} | {{NAVCONTENT_START}} | ||
- | < | + | We start by expanding the quadratic in the numerator with the square rule: |
+ | |||
+ | |||
+ | <math>\begin{align}\frac{(2-i\sqrt{3})^2}{1+i\sqrt{3}}&= \frac{2^2-2\cdot 2\cdot i\sqrt{3}+(i\sqrt{3})^2}{1+i\sqrt{3}}\\ | ||
+ | &=\frac{4-4\sqrt{3}i-3}{1+i\sqrt{3}}\\ | ||
+ | &=\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}\end{align}</math> | ||
+ | |||
+ | |||
+ | {{NAVCONTENT_STEP}} | ||
+ | Then, we multiply top and bottom by the complex conjugate of the numerator: | ||
+ | |||
+ | |||
+ | <math>\begin{align}\frac{1-4\sqrt{3}i}{1+i\sqrt{3}}&=\frac{(1-4\sqrt{3}i)(1-i\sqrt{3})}{(1+i\sqrt{3})(1-i\sqrt{3})}\\ | ||
+ | &=\frac{1\cdot 1-1\cdot i\sqrt{3}-1\cdot 4\sqrt{3}i+ 4\sqrt{3}i\cdot i \sqrt{3}}{1^2-(i\sqrt{3})^2}\\ | ||
+ | &=\frac{1-i\sqrt{3}-4\sqrt{3}i+4(\sqrt{3})^2i^2}{1+(\sqrt{3})^2)}\\ | ||
+ | &=\frac{1-(\sqrt{3}+4\sqrt{3})i-4\cdot 3}{1+3}\\ | ||
+ | &=\frac{1-12-(1+4)\sqrt{3}i}{4}\\ | ||
+ | &=-\frac{11}{4}-\frac{5\sqrt{3}}{4}i.\end{align}</math> | ||
+ | |||
{{NAVCONTENT_STOP}} | {{NAVCONTENT_STOP}} |
Version vom 10:07, 23. Sep. 2008
We start by expanding the quadratic in the numerator with the square rule:
3(2−i
3)2=1+i
322−2
2
i
3+(i
3)2=1+i
34−4
3i−3=1+i
31−4
3i
Then, we multiply top and bottom by the complex conjugate of the numerator:
31−4
3i=(1+i
3)(1−i
3)(1−4
3i)(1−i
3)=12−(i
3)21
1−1
i
3−1
4
3i+4
3i
i
3=1+(
3)2)1−i
3−4
3i+4(
3)2i2=1+31−(
3+4
3)i−4
3=41−12−(1+4)
3i=−411−45
3i