Processing Math: Done
Lösung 3.1:4f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
Zeile 11: | Zeile 11: | ||
- | <math>(1+i)(x-iy)+i(x+iy) | + | <math>(1+i)(x-iy)+i(x+iy)</math><math> |
\begin{align} &=1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\ | \begin{align} &=1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\ | ||
&=x-iy+ix+y+ix-y\\ | &=x-iy+ix+y+ix-y\\ | ||
Zeile 26: | Zeile 26: | ||
- | <math>\begin{cases}x=3\\2x-y=5\end{cases}</math> | + | <math>\begin{cases}x=3\\2x-y=5.\end{cases}</math> |
Version vom 11:46, 23. Sep. 2008
Because the equation contains both
and use the real part
With this approach, the left-hand side of the equation becomes
x−1
iy+i
x−i2y+i
x+i2y=x−iy+ix+y+ix−y=x+(2x−y)i
and the whole equation becomes
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e.
x=32x−y=5
This gives 3−5=1
A quick check shows that
+iz=(1+i)(3−i)+i(3+i)=3−i+3i+1+3i−1=3+5i=RHS