Processing Math: Done
Lösung 1.2:3f
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
|||
Zeile 8: | Zeile 8: | ||
<math>x^{\tan x}=e^{\tan x\centerdot \ln x}</math> | <math>x^{\tan x}=e^{\tan x\centerdot \ln x}</math> | ||
- | + | (*) | |
Now, we obtain the derivative by first using the chain rule | Now, we obtain the derivative by first using the chain rule | ||
Zeile 25: | Zeile 25: | ||
& =x^{\tan x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\ | & =x^{\tan x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\ | ||
\end{align}</math> | \end{align}</math> | ||
+ | |||
+ | where we have used (*) in reverse. |
Version vom 14:55, 13. Okt. 2008
We have no differentiation rule for a function raised to another function, but instead we rewrite
which, in our case, gives
lnx
Now, we obtain the derivative by first using the chain rule
tanx
lnx
=e
tanx
lnx
tanx
lnx
and then the product rule:
lnx
tanx
lnx+tanx
lnx
=etanx
lnx
1cos2x
lnx+tanx
x1
=etanx
lnx
lnxcos2x+xtanx
=xtanx
lnxcos2x+xtanx
where we have used (*) in reverse.