Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 1.2:3f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 8: Zeile 8:
<math>x^{\tan x}=e^{\tan x\centerdot \ln x}</math>
<math>x^{\tan x}=e^{\tan x\centerdot \ln x}</math>
-
 
+
(*)
Now, we obtain the derivative by first using the chain rule
Now, we obtain the derivative by first using the chain rule
Zeile 25: Zeile 25:
& =x^{\tan x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\
& =x^{\tan x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\
\end{align}</math>
\end{align}</math>
 +
 +
where we have used (*) in reverse.

Version vom 14:55, 13. Okt. 2008

We have no differentiation rule for a function raised to another function, but instead we rewrite


ab=elnab=eblna,

which, in our case, gives


xtanx=etanxlnx (*)

Now, we obtain the derivative by first using the chain rule


ddxetanxlnx=etanxlnxtanxlnx 


and then the product rule:


=etanxlnxtanxlnx+tanxlnx=etanxlnx1cos2xlnx+tanxx1=etanxlnxlnxcos2x+xtanx=xtanxlnxcos2x+xtanx

where we have used (*) in reverse.