Lösung 2.1:1c
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.1:1c moved to Solution 2.1:1c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | The straight line | |
- | < | + | <math>y=3-2x</math> |
- | {{ | + | cuts the |
- | {{ | + | <math>x</math> |
- | < | + | -axis at the point |
- | + | ||
+ | |||
+ | <math>y=3-2x=0\quad \Leftrightarrow \quad x={3}/{2}\;</math> | ||
+ | |||
+ | |||
+ | so the part of the line to the right of | ||
+ | <math>x=\frac{3}{2}</math> | ||
+ | lies under the | ||
+ | <math>y</math> | ||
+ | -axis. | ||
[[Image:2_1_1_c1.gif|center]] | [[Image:2_1_1_c1.gif|center]] | ||
+ | |||
+ | When the curve of a function lies both above and below the | ||
+ | <math>x</math> | ||
+ | -axis, the value of the integral can be interpreted as “an area having a sign”, which means that, for that part where the curve is under the | ||
+ | <math>x</math> | ||
+ | -axis, we instead subtract the area between the curve and the | ||
+ | <math>x</math> | ||
+ | -axis. | ||
+ | |||
+ | If we divide up the area between the straight line and the | ||
+ | <math>x</math> | ||
+ | -axis at | ||
+ | <math>x={3}/{2}\;</math>, we see that the value of the integral is the area of the triangle to the left in the figure below, minus the area of the triangle to the right. | ||
+ | |||
+ | |||
+ | |||
[[Image:2_1_1_c2.gif|center]] | [[Image:2_1_1_c2.gif|center]] | ||
+ | |||
+ | We obtain | ||
+ | |||
+ | |||
+ | <math>\int\limits_{0}^{2}{\left( 3-2x \right)\ }dx=\frac{1}{2}\centerdot \frac{3}{2}\centerdot 3-\frac{1}{2}\centerdot \frac{1}{2}\centerdot 1=\frac{9}{4}-\frac{1}{4}=2</math> |
Version vom 12:02, 17. Okt. 2008
The straight line
x=3
2
so the part of the line to the right of
When the curve of a function lies both above and below the
If we divide up the area between the straight line and the
2
We obtain
\displaystyle \int\limits_{0}^{2}{\left( 3-2x \right)\ }dx=\frac{1}{2}\centerdot \frac{3}{2}\centerdot 3-\frac{1}{2}\centerdot \frac{1}{2}\centerdot 1=\frac{9}{4}-\frac{1}{4}=2