Lösung 2.1:4b
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.1:4b moved to Solution 2.1:4b: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | By completing the square of the equation of the curve |
- | + | ||
- | { | + | |
- | + | <math>\begin{align} | |
- | + | & y=-x^{2}+2x+2=-\left( x^{2}-2x-2 \right) \\ | |
- | { | + | & =-\left( \left( x-1 \right)^{2}-1^{2}-2 \right)=-\left( x-1 \right)^{2}+3 \\ |
- | { | + | \end{align}</math> |
- | < | + | |
- | + | ||
- | { | + | we can read off that the curve is a downward parabola with maximum value |
- | + | <math>y=\text{3 }</math> | |
- | + | when | |
+ | <math>x=\text{1}</math> | ||
+ | |||
[[Image:2_1_4_b.gif|center]] | [[Image:2_1_4_b.gif|center]] | ||
+ | |||
+ | |||
+ | The region whose area we shall determine is the one shaded in the figure. | ||
+ | |||
+ | We can express this area using the integral | ||
+ | |||
+ | Area= | ||
+ | <math>\int\limits_{a}^{b}{\left( -x^{2}+2x+2 \right)}\,dx</math> | ||
+ | |||
+ | where | ||
+ | <math>a</math> | ||
+ | and | ||
+ | <math>b</math> | ||
+ | are the | ||
+ | <math>x</math> | ||
+ | -coordinates for the points of intersection between the parabola and the | ||
+ | <math>x</math> | ||
+ | -axis. | ||
+ | |||
+ | A solution plan is to first determine the intersection points, | ||
+ | <math>x=a</math> | ||
+ | and | ||
+ | <math>x=b</math>, and then calculate the area using the integral formula above. | ||
+ | |||
+ | The parabola cuts the | ||
+ | <math>x</math> | ||
+ | -axis when its | ||
+ | <math>y</math> | ||
+ | -coordinate is zero, i.e. | ||
+ | |||
+ | |||
+ | <math>0=-x^{2}+2x+2</math> | ||
+ | |||
+ | |||
+ | and because we have already completed the square of the right-hand side once, the equation can be written as | ||
+ | |||
+ | |||
+ | <math>0=-\left( x-1 \right)^{2}+3</math> | ||
+ | |||
+ | or | ||
+ | |||
+ | |||
+ | <math>\left( x-1 \right)^{2}=3</math>. | ||
+ | |||
+ | Taking the root gives | ||
+ | <math>x=1\pm \sqrt{3}</math>. The points of intersection | ||
+ | <math>x=1-\sqrt{3}</math> | ||
+ | and | ||
+ | <math>x=1+\sqrt{3}</math>. | ||
+ | |||
+ | The area we are looking for is therefore given by | ||
+ | |||
+ | Area | ||
+ | <math>=\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -x^{2}+2x+2 \right)}\,dx</math> | ||
+ | |||
+ | |||
+ | Instead of directly starting to calculate, we can start from the integrand in the form we obtain after completing its square, | ||
+ | |||
+ | Area= | ||
+ | <math>=\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -\left( x-1 \right)^{2}+3 \right)}\,dx</math> | ||
+ | |||
+ | |||
+ | which seems easier. Because the expression | ||
+ | <math>x-1</math> | ||
+ | inside the square is a linear expression, we can write down a primitive function “in the usual way”, | ||
+ | |||
+ | Area | ||
+ | <math>=\left[ -\frac{\left( x-1 \right)^{3}}{3}+3x \right]_{1-\sqrt{3}}^{1+\sqrt{3}}</math> | ||
+ | |||
+ | |||
+ | (If one is uncertain of this step, it is possible to differentiate the primitive function and see that one really does get the integral back). Hence, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \text{Area}=-\frac{\left( 1+\sqrt{3}-1 \right)^{3}}{3}+3\left( 1+\sqrt{3} \right)-\left( -\frac{\left( 1-\sqrt{3}-1 \right)^{3}}{3}+3\left( 1-\sqrt{3} \right) \right) \\ | ||
+ | & =-\frac{\left( \sqrt{3} \right)^{3}}{3}+3+3\sqrt{3}+\frac{\left( -\sqrt{3} \right)^{3}}{3}-3+3\sqrt{3} \\ | ||
+ | & =-\frac{\sqrt{3}\sqrt{3}\sqrt{3}}{3}+3\sqrt{3}+\frac{\left( -\sqrt{3} \right)\left( -\sqrt{3} \right)\left( -\sqrt{3} \right)}{3}+3\sqrt{3} \\ | ||
+ | & =-\frac{3\sqrt{3}}{3}+3\sqrt{3}-\frac{3\sqrt{3}}{3}+3\sqrt{3} \\ | ||
+ | & =-\sqrt{3}+3\sqrt{3}-\sqrt{3}+3\sqrt{3} \\ | ||
+ | & =\left( -1+3-1+3 \right)\sqrt{3}=4\sqrt{3} \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | NOTE: The calculations become a lot more complicated if one starts from | ||
+ | |||
+ | |||
+ | <math>=\int\limits_{1-\sqrt{3}}^{1+\sqrt{3}}{\left( -x^{2}+2x+2 \right)}\,dx=....</math> |
Version vom 11:32, 18. Okt. 2008
By completing the square of the equation of the curve
x2−2x−2
=−
x−1
2−12−2
=−
x−1
2+3
we can read off that the curve is a downward parabola with maximum value
The region whose area we shall determine is the one shaded in the figure.
We can express this area using the integral
Area=
ba
−x2+2x+2
dx
where
A solution plan is to first determine the intersection points,
The parabola cuts the
and because we have already completed the square of the right-hand side once, the equation can be written as
x−1
2+3
or
x−1
2=3
Taking the root gives
3
3
3
The area we are looking for is therefore given by
Area
1+
31−
3
−x2+2x+2
dx
Instead of directly starting to calculate, we can start from the integrand in the form we obtain after completing its square,
Area=
1+
31−
3
−
x−1
2+3
dx
which seems easier. Because the expression
Area
−3
x−1
3+3x
1+
31−
3
(If one is uncertain of this step, it is possible to differentiate the primitive function and see that one really does get the integral back). Hence,
1+
3−1
3+3
1+
3
−
−3
1−
3−1
3+3
1−
3
=−3
3
3+3+3
3+3
−
3
3−3+3
3=−3
3
3
3+3
3+3
−
3
−
3
−
3
+3
3=−33
3+3
3−33
3+3
3=−
3+3
3−
3+3
3=
−1+3−1+3
3=4
3
NOTE: The calculations become a lot more complicated if one starts from
1+
31−
3
−x2+2x+2
dx=