Lösung 2.1:4c
Aus Online Mathematik Brückenkurs 2
K (Lösning 2.1:4c moved to Solution 2.1:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | + | First, we need a picture of what the region looks like. | |
- | < | + | |
- | {{ | + | Both curves, |
- | { | + | <math>y=\frac{1}{4}x^{2}+2</math> |
- | < | + | and |
- | + | <math>y=8-\frac{1}{8}x^{2}</math>, are parabolas, the first with a minimum value | |
- | + | <math>y=\text{2}</math> | |
- | < | + | when |
- | { | + | <math>x=0</math>, and the second with a maximum value of |
- | + | <math>y=\text{8}</math> | |
- | < | + | when |
- | + | <math>x=0</math>. Roughly speaking, the curves have the appearance shown in the figure below, where the shaded region whose area we are trying to find lies between the curves. | |
[[Image:2_1_4_c.gif|center]] | [[Image:2_1_4_c.gif|center]] | ||
+ | |||
+ | |||
+ | The region is bounded above by the parabola | ||
+ | <math>y=8-\frac{1}{8}x^{2}</math> | ||
+ | and below by the parabola | ||
+ | <math>y=\frac{1}{4}x^{2}+2</math>. If we can determine the | ||
+ | <math>x</math> | ||
+ | -coordinates, | ||
+ | <math>x=a\text{ }</math> | ||
+ | and | ||
+ | <math>x=b</math>, for the points of intersection between the curves, the area we are looking for will be given by | ||
+ | |||
+ | Area = | ||
+ | <math>\int\limits_{a}^{b}{\left( \left( 8-\frac{1}{8}x^{2} \right)-\left( \frac{1}{4}x^{2}+2 \right) \right)}\,dx</math> | ||
+ | |||
+ | |||
+ | The integrand is the | ||
+ | <math>y</math> | ||
+ | -value for the upper parabola minus the corresponding | ||
+ | <math>y</math> | ||
+ | -value for the lower parabola. | ||
+ | |||
+ | At the points where the curves intersect each other, the | ||
+ | <math>x</math> | ||
+ | - and | ||
+ | <math>y</math> | ||
+ | -coordinates are equal, which gives the equation system, | ||
+ | |||
+ | |||
+ | <math>\left\{ \begin{matrix} | ||
+ | y=8-\frac{1}{8}x^{2} \\ | ||
+ | y=\frac{1}{4}x^{2}+2 \\ | ||
+ | \end{matrix} \right.</math> | ||
+ | |||
+ | |||
+ | If we eliminate | ||
+ | <math>y</math> | ||
+ | from this system, we get the following equation for | ||
+ | <math>x</math>, | ||
+ | |||
+ | |||
+ | <math>8-\frac{1}{8}x^{2}=\frac{1}{4}x^{2}+2</math> | ||
+ | |||
+ | |||
+ | If we move the | ||
+ | <math>x^{2}</math> | ||
+ | terms onto one side and the constants onto the other, we obtain | ||
+ | |||
+ | |||
+ | <math>\frac{1}{4}x^{2}+\frac{1}{8}x^{2}=8-2</math>, | ||
+ | |||
+ | i.e. | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \left( \frac{1}{4}+\frac{1}{8} \right)x^{2}=6 \\ | ||
+ | & \frac{3}{8}x^{2}=6 \\ | ||
+ | & x^{2}=16 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | The | ||
+ | <math>x</math> | ||
+ | -coordinates of the points of intersection are therefore equal to | ||
+ | <math>x=-\text{4 }</math> | ||
+ | and | ||
+ | <math>x=\text{4}</math>. | ||
+ | |||
+ | The area of the area between the curves is given by | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \text{Area}=\int\limits_{-4}^{4}{\left( \left( 8-\frac{1}{8}x^{2} \right)-\left( \frac{1}{4}x^{2}+2 \right) \right)}\,dx \\ | ||
+ | & =\int\limits_{-4}^{4}{\left( 8-\frac{1}{8}x^{2}-\frac{1}{4}x^{2}-2 \right)}\,dx \\ | ||
+ | & =\int\limits_{-4}^{4}{\left( 6-\left( \frac{1}{8}+\frac{1}{4} \right)x^{2} \right)}\,dx \\ | ||
+ | & =\int\limits_{-4}^{4}{\left( 6-\frac{3}{8}x^{2} \right)}\,dx \\ | ||
+ | & =\left[ 6x-\frac{3}{8}\frac{x^{3}}{3} \right]_{-4}^{4} \\ | ||
+ | & =\left[ 6x-\frac{x^{3}}{8} \right]_{-4}^{4} \\ | ||
+ | & =6\centerdot 4-\frac{4^{3}}{8}-\left( 6\left( -4 \right)-\frac{\left( -4 \right)^{3}}{8} \right) \\ | ||
+ | & =24-8+24-8=32 \\ | ||
+ | \end{align}</math> |
Version vom 12:01, 18. Okt. 2008
First, we need a picture of what the region looks like.
Both curves,
The region is bounded above by the parabola
Area =
ba
8−81x2
−
41x2+2
dx
The integrand is the
At the points where the curves intersect each other, the
y=8−81x2y=41x2+2
If we eliminate
If we move the
i.e.
41+81
x2=683x2=6x2=16
The
The area of the area between the curves is given by
\displaystyle \begin{align}
& \text{Area}=\int\limits_{-4}^{4}{\left( \left( 8-\frac{1}{8}x^{2} \right)-\left( \frac{1}{4}x^{2}+2 \right) \right)}\,dx \\
& =\int\limits_{-4}^{4}{\left( 8-\frac{1}{8}x^{2}-\frac{1}{4}x^{2}-2 \right)}\,dx \\
& =\int\limits_{-4}^{4}{\left( 6-\left( \frac{1}{8}+\frac{1}{4} \right)x^{2} \right)}\,dx \\
& =\int\limits_{-4}^{4}{\left( 6-\frac{3}{8}x^{2} \right)}\,dx \\
& =\left[ 6x-\frac{3}{8}\frac{x^{3}}{3} \right]_{-4}^{4} \\
& =\left[ 6x-\frac{x^{3}}{8} \right]_{-4}^{4} \\
& =6\centerdot 4-\frac{4^{3}}{8}-\left( 6\left( -4 \right)-\frac{\left( -4 \right)^{3}}{8} \right) \\
& =24-8+24-8=32 \\
\end{align}