Processing Math: Done
Lösung 2.2:3c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 2.2:3c moved to Solution 2.2:3c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | It is simpler to investigate the integral if we write it as |
- | < | + | |
- | {{ | + | |
+ | <math>\int{\ln x\centerdot \frac{1}{x}\,dx}</math>, | ||
+ | |||
+ | The derivative of | ||
+ | <math>\ln x</math> | ||
+ | is | ||
+ | <math>\frac{1}{x}</math>, so if we choose | ||
+ | <math>u=\ln x</math>, the integral can be expressed as | ||
+ | |||
+ | |||
+ | <math>\int{u\centerdot {u}'\,dx}</math> | ||
+ | |||
+ | |||
+ | Thus, it seems that | ||
+ | <math>u=\ln x</math> | ||
+ | is a useful substitution, | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & \int{\ln x\centerdot \frac{1}{x}\,dx}=\left\{ \begin{matrix} | ||
+ | u=\ln x \\ | ||
+ | du=\left( \ln x \right)^{\prime }\,dx=\frac{1}{x}\,dx \\ | ||
+ | \end{matrix} \right\} \\ | ||
+ | & =\int{u\,du=\frac{1}{2}u^{2}+C} \\ | ||
+ | & =\frac{1}{2}\left( \ln x \right)^{2}+C \\ | ||
+ | \end{align}</math> |
Version vom 11:02, 21. Okt. 2008
It is simpler to investigate the integral if we write it as
lnx
x1dx
The derivative of
u
u
dx
Thus, it seems that
lnx
x1dx=
u=lnxdu=
lnx
dx=x1dx
=
udu=21u2+C=21
lnx
2+C