Processing Math: Done
Lösung 3.3:4c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Lösning 3.3:4c moved to Solution 3.3:4c: Robot: moved page) |
|||
Zeile 1: | Zeile 1: | ||
- | {{ | + | We complete the square on the left-hand side: |
- | < | + | |
- | {{ | + | |
+ | <math>\begin{align} | ||
+ | & \left( z+1 \right)^{\text{2}}-1^{2}+3=0 \\ | ||
+ | & \left( z+1 \right)^{\text{2}}+2=0 \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | Taking the root now gives | ||
+ | <math>z+1=\pm i\sqrt{2}</math> | ||
+ | i.e. | ||
+ | <math>z=-1+i\sqrt{2}</math> | ||
+ | and | ||
+ | <math>z=-1-i\sqrt{2}</math>. | ||
+ | |||
+ | We test the solutions in the equation to ascertain that we have calculated correctly. | ||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=-1+i\sqrt{2}:\quad z^{2}+2z+3=\left( -1+i\sqrt{2} \right)^{2}+2\left( -1+i\sqrt{2} \right)+3 \\ | ||
+ | & =\left( -1 \right)^{2}-2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2+2i\sqrt{2}+3 \\ | ||
+ | & =1-2\centerdot i\sqrt{2}-2-2+2i\sqrt{2}+3=0, \\ | ||
+ | \end{align}</math> | ||
+ | |||
+ | |||
+ | |||
+ | <math>\begin{align} | ||
+ | & z=-1-i\sqrt{2}:\quad z^{2}+2z+3=\left( -1-i\sqrt{2} \right)^{2}+2\left( -1-i\sqrt{2} \right)+3 \\ | ||
+ | & =\left( -1 \right)^{2}+2\centerdot i\sqrt{2}+i^{2}\left( \sqrt{2} \right)^{2}-2-2i\sqrt{2}+3 \\ | ||
+ | & =1+2\centerdot i\sqrt{2}-2-2-2\sqrt{2}i+3=0, \\ | ||
+ | \end{align}</math> |
Version vom 10:32, 25. Okt. 2008
We complete the square on the left-hand side:
z+1
2−12+3=0
z+1
2+2=0
Taking the root now gives
i
2
2
2
We test the solutions in the equation to ascertain that we have calculated correctly.
2:z2+2z+3=
−1+i
2
2+2
−1+i
2
+3=
−1
2−2
i
2+i2
2
2−2+2i
2+3=1−2
i
2−2−2+2i
2+3=0
2:z2+2z+3=
−1−i
2
2+2
−1−i
2
+3=
−1
2+2
i
2+i2
2
2−2−2i
2+3=1+2
i
2−2−2−2
2i+3=0