Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:5b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K (Lösning 3.3:5b moved to Solution 3.3:5b: Robot: moved page)
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
+
Complete the square of the left-hand side:
-
<center> [[Image:3_3_5b.gif]] </center>
+
 
-
{{NAVCONTENT_STOP}}
+
 
 +
<math>\begin{align}
 +
& \left( z-\frac{2-i}{2} \right)^{2}-\left( \frac{2-i}{2} \right)^{2}+3-i=0 \\
 +
& \left( z-\frac{2-i}{2} \right)^{2}-\left( 1-i+\frac{1}{4}i^{2} \right)+3-i=0 \\
 +
& \left( z-\frac{2-i}{2} \right)^{2}-1+i+\frac{1}{4}+3-i=0 \\
 +
& \left( z-\frac{2-i}{2} \right)^{2}+\frac{9}{4}=0 \\
 +
& \\
 +
\end{align}</math>
 +
 
 +
 
 +
Taking the root then gives that the solutions are
 +
 
 +
 
 +
<math>z-\frac{2-i}{2}=\pm \frac{3}{2}i\quad \Leftrightarrow \quad z=\left\{ \begin{array}{*{35}l}
 +
1+i \\
 +
1-2i\text{ } \\
 +
\end{array} \right.</math>
 +
 
 +
 
 +
Finally, we substitute the solutions into the equation and check that it is satisfied:
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=1+i:\quad z^{2}-\left( 2-i \right)z+\left( 3-i \right) \\
 +
& =\left( 1+i \right)^{2}-\left( 2-i \right)\left( 1+i \right)+3-i \\
 +
& =1+2i+i^{2}-\left( 2+2i-i-i^{2} \right)+3-i \\
 +
& =1+2i-1-2-i-1+3-i=0, \\
 +
\end{align}</math>
 +
 
 +
 
 +
 
 +
 
 +
<math>\begin{align}
 +
& z=1-2i:\quad z^{2}-\left( 2-i \right)z+\left( 3-i \right) \\
 +
& =\left( 1-2i \right)^{2}-\left( 2-i \right)\left( 1-2i \right)+3-i \\
 +
& =1-4i+4i^{2}-\left( 2-4i-i+2i^{2} \right)+3-i \\
 +
& =1-4i-4-2+5i+2+3-i=0. \\
 +
\end{align}</math>

Version vom 11:30, 25. Okt. 2008

Complete the square of the left-hand side:


z22i222i2+3i=0z22i21i+41i2+3i=0z22i21+i+41+3i=0z22i2+49=0


Taking the root then gives that the solutions are


z22i=23iz=1+i12i  


Finally, we substitute the solutions into the equation and check that it is satisfied:


z=1+i:z22iz+3i=1+i22i1+i+3i=1+2i+i22+2iii2+3i=1+2i12i1+3i=0



z=12i:z22iz+3i=12i22i12i+3i=14i+4i224ii+2i2+3i=14i42+5i+2+3i=0