Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.2:6d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
We can determine the number's magnitude directly using the distance formula
+
We can determine the number's magnitude directly using the distance formula,
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \left| \sqrt{10}+\sqrt{30}i \right|=\sqrt{\left( \sqrt{10} \right)^{2}+\left( \sqrt{30} \right)^{2}}=\sqrt{10+30} \\
+
-
& =\sqrt{40}=\sqrt{4\centerdot 10}=2\sqrt{10} \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
\bigl|\sqrt{10}+\sqrt{30}i\bigr|
 +
&= \sqrt{\bigl(\sqrt{10}\,\bigr)^2+\bigl(\sqrt{30}\,\bigr)^2}\\[5pt]
 +
&= \sqrt{10+30}\\[5pt]
 +
&= \sqrt{40}\\[5pt]
 +
&= \sqrt{4\cdot 10}\\[5pt]
 +
&= 2\sqrt{10}\,\textrm{.}
 +
\end{align}</math>}}
In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.
In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.
- 
[[Image:3_2_6_d_bild.gif]] [[Image:3_2_6_d_bildtext.gif]]
[[Image:3_2_6_d_bild.gif]] [[Image:3_2_6_d_bildtext.gif]]
- 
The polar form is
The polar form is
-
 
+
{{Displayed math||<math>2\sqrt{10}\Bigl( \cos\frac{\pi}{3} + i\sin\frac{\pi}{3} \Bigr)\,\textrm{.}</math>}}
-
<math>2\sqrt{10}\left( \cos \frac{\pi }{3}+i\sin \frac{\pi }{3} \right)</math>
+

Version vom 13:56, 29. Okt. 2008

We can determine the number's magnitude directly using the distance formula,

10+30i=102+302=10+30=40=410=210.

In addition, the number lies in the first quadrant and we can therefore determine the argument using simple trigonometry.

Image:3_2_6_d_bild.gif Image:3_2_6_d_bildtext.gif

The polar form is

210cos3+isin3.