Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.2:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
What makes the integral not entirely simple is the expression <math>1-x</math> under the root sign, so we try the substitution <math>u=1-x</math>,
What makes the integral not entirely simple is the expression <math>1-x</math> under the root sign, so we try the substitution <math>u=1-x</math>,
-
{{Displayed math||<math>\int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align}
+
{{Abgesetzte Formel||<math>\int\limits_0^1 \sqrt[3]{1-x}\,dx = \left\{ \begin{align}
u &= 1-x\\[5pt]
u &= 1-x\\[5pt]
du &= (1-x)'\,dx = -\,dx
du &= (1-x)'\,dx = -\,dx
Zeile 8: Zeile 8:
Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.
Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.
-
{{Displayed math||<math>-\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>-\int\limits_1^0 \sqrt[3]{u}\,du = +\int\limits_0^1 \sqrt[3]{u}\,du\,\textrm{.}</math>}}
All that is now left is routine calculations,
All that is now left is routine calculations,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int\limits_0^1 \sqrt[3]{u}\,du
\int\limits_0^1 \sqrt[3]{u}\,du
&= \int\limits_0^1 u^{1/3}\,du
&= \int\limits_0^1 u^{1/3}\,du

Version vom 13:01, 10. Mär. 2009

What makes the integral not entirely simple is the expression 1x under the root sign, so we try the substitution u=1x,

1031xdx=udu=1x=(1x)dx=dx=013udu. 

Note how the new limits of integration go from 1 to 0 (and not the other way around!). It is possible to change the order of the limits if we change sign at the same time, i.e.

013udu=+103udu. 

All that is now left is routine calculations,

103udu=10u13du= 31+1u13+1 10=43 u43 10=43143043=43.