Processing Math: Done
Lösung 2.3:1a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The formula for integration by parts reads | The formula for integration by parts reads | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int f(x)g(x)\,dx = F(x)g(x) - \int F(x)g'(x)\,dx\,,</math>}} |
where <math>F(x)</math> is a primitive function of <math>f(x)</math> and <math>g'(x)</math> is a derivative of <math>g(x)</math>. | where <math>F(x)</math> is a primitive function of <math>f(x)</math> and <math>g'(x)</math> is a derivative of <math>g(x)</math>. | ||
Zeile 10: | Zeile 10: | ||
In the integral | In the integral | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int 2xe^{-x}\,dx\,,</math>}} |
it can seem appropriate to choose <math>f(x)=e^{-x}</math> and <math>g(x) = 2x</math>, because then <math>g'(x) = 2</math> and we have only <math>F(x) = -e^{-x}</math> left, | it can seem appropriate to choose <math>f(x)=e^{-x}</math> and <math>g(x) = 2x</math>, because then <math>g'(x) = 2</math> and we have only <math>F(x) = -e^{-x}</math> left, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\int 2x\cdot e^{-x}\,dx | \int 2x\cdot e^{-x}\,dx | ||
&= 2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx\\[5pt] | &= 2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx\\[5pt] | ||
Zeile 22: | Zeile 22: | ||
It remains only to integrate <math>e^{-x}</math> and we are finished, | It remains only to integrate <math>e^{-x}</math> and we are finished, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\phantom{\int 2x\cdot e^{-x}\,dx}{} | \phantom{\int 2x\cdot e^{-x}\,dx}{} | ||
&= \rlap{-2xe^{-x} + 2\bigl(-e^{-x}\bigr) + C}\phantom{2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx}\\[5pt] | &= \rlap{-2xe^{-x} + 2\bigl(-e^{-x}\bigr) + C}\phantom{2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx}\\[5pt] |
Version vom 13:03, 10. Mär. 2009
The formula for integration by parts reads
![]() ![]() ![]() ![]() |
where (x)
If we are to use integration by parts, the integrand has to be divided up into two factors, a factor (x)
In the integral
![]() ![]() |
it can seem appropriate to choose (x)=2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
It remains only to integrate
![]() ![]() |