3.2 Polarform
Aus Online Mathematik Brückenkurs 2
Zeile 108: | Zeile 108: | ||
<div class="regel">{{Abgesetzte Formel||<math>|\,z\,|=\sqrt{a^2+b^2}\,\mbox{.}</math>}}</div> | <div class="regel">{{Abgesetzte Formel||<math>|\,z\,|=\sqrt{a^2+b^2}\,\mbox{.}</math>}}</div> | ||
- | Wir sehen hier dass <math>|\,z\,|</math> eine reelle Zahl ist, und dass <math>|\,z\,|\ge 0</math>. Für eine reelle Zahl ist <math>b = 0</math> und daher ist <math>|\,z\,|=\sqrt{a^2}=|\,a\,|</math>, wie gewohnt. Geometrisch ist der Betrag einer komplexen Zahl der Abstand vom Punkt <math>(0,0)</math> zu einer komplexen Zahl mit den Koordinaten <math>(a, b)</math>, nach dem Gesetz des Pythagoras. | + | Wir sehen hier, dass <math>|\,z\,|</math> eine reelle Zahl ist, und dass <math>|\,z\,|\ge 0</math>. Für eine reelle Zahl ist <math>b = 0</math> und daher ist <math>|\,z\,|=\sqrt{a^2}=|\,a\,|</math>, wie gewohnt. Geometrisch ist der Betrag einer komplexen Zahl der Abstand vom Punkt <math>(0,0)</math> zu einer komplexen Zahl mit den Koordinaten <math>(a, b)</math>, nach dem Gesetz des Pythagoras. |
<center>{{:3.2 - Bild - Der Betrag von z}}</center> | <center>{{:3.2 - Bild - Der Betrag von z}}</center> | ||
Zeile 186: | Zeile 186: | ||
''' Beispiel 4''' | ''' Beispiel 4''' | ||
- | Zeichnen Sie in der komplexen Zahlenebene alle Zahlen ein, die die | + | Zeichnen Sie in der komplexen Zahlenebene alle Zahlen ein, die die folgenden (Un)gleichungen erfüllen: |
Zeile 287: | Zeile 287: | ||
</div> | </div> | ||
- | Wenn man zwei komplexe Zahlen multipliziert, sind deren Beträge multipliziert, und deren Argumente addiert, Wenn man zwei komplexe Zahlen | + | Wenn man zwei komplexe Zahlen multipliziert, sind deren Beträge multipliziert, und deren Argumente addiert, Wenn man zwei komplexe Zahlen dividiert, werden deren Beträge dividiert, und deren Argumente subtrahiert. Zusammengefasst gilt also: |
<div class="regel"> | <div class="regel"> |
Version vom 00:19, 7. Jun. 2009
Theorie | Übungen |
Inhalt:
- Die komplexe Zahlenebene
- Addition und Subtraktion in der komplexen Zahlenebene
- Betrag und Argument
- Polarform
- Multiplikation und Division in Polarform
- Multiplikation mit i in der komplexen Zahlenebene
Lernziele:
Nach diesem Abschnitt sollten Sie folgendes können:
- Geometrisch die arithmetischen Rechnungen in der komplexen Zahlenebene verstehen.
- Komplexe Zahlen zwischen der Form a + ib und der Polarform umwandeln.
Die komplexe Zahlenebene
Nachdem eine komplexe Zahl b)
Diese geometrische Interpretation der komplexen Zahlen nennt man die komplexe Zahlenebene.
Anmerkung: Die reellen Zahlen sind komplexe Zahlen, wo der Imaginärteil 0 ist, und die also auf der reellen Achse liegen. Daher kann man die Erweiterung der reellen Zahlen zu den komplexen Zahlen so sehen, dass man die Dimension der Zahlengerade auf eine Ebene erweitert.
Generell kann man komplexe Zahlen wie Vektoren behandeln.
|
| |||
Geometrisch erhält man die Zahl z + w indem man den Vektor von 0 bis w parallel zu z verschiebt. | Die Subtraktion z - w kann wie z + (-w) geschrieben werden, und kann also geometrisch interpretiert also ob man den Vektor von 0 bis -w parallel bis z verschiebt. |
Beispiel 1
Mit
We have that
|
|
Beachten Sie, dass die konjugiert komplexen Zahlen Spiegelbilder in der reellen Achse sind.
Beispiel 2
Zeichnen Sie alle Zahlen
Rez ,3
−1 .Imz
2
Die erste Ungleichung definiert die linke Fläche, und die zweite Ungleichung definiert die rechte Fläche.
|
| |
Alle Zahlen die Re z ≥ 3 erfüllen haben einen Realteil dass größer als to 3. | Alle Zahlen die -1 < Im z ≤ 2 erfüllen haben einen Imaginärteil der zwischen -1 und 2 liegt. Die untere Gerade ist geschattet, und dies bedeutet dass die Punkte auf dieser gerade nicht zum Gebiet. |
Der Betrag komplexer Zahlen
Die reellen Zahlen können wir einfach ordnen, nachdem größere Zahlen rechts von kleineren Zahlen auf der Zahlengerade liegen.
Für komplexe Zahlen ist dies aber nicht möglich. Man kann die komplexen Zahlen nicht nach Größe ordnen. Zum Beispiel kann man nicht sagen ob
Für eine komplexe Zahl z
![]() ![]() ![]() |
Wir sehen hier, dass z
z
0
z
=
a2=
a
0)
b)
Abstand zwischen komplexen Zahlen
Mit der Formel für den Abstand zwischen zwei Punkten in einer Ebene, können wir den Abstand
![]() |
Nachdem



Beispiel 3
Zeichnen Sie in der komplexen Zahlenebene die folgende Menge:
|
|
|
|
|
|
|
|
Beispiel 4
Zeichnen Sie in der komplexen Zahlenebene alle Zahlen ein, die die folgenden (Un)gleichungen erfüllen:
z−2i
31
Rez
2
Die erste Ungleichung gibt, dass die Zahlen im Kreis mit dem Radius 3 um den Mittelpunkt2i liegen müssen. Die zweite Ungleichung ist ein vertikaler Streifen von Zahlen, deren Realteil zwischen 1 und 2 liegt. Die Zahlen, die in beiden Gebieten liegen, erfüllen auch beide Ungleichungen.
z+1
=
z−2
Die Gleichung kann wie geschrieben werden. Also mussz−(−1)
=
z−2
z denselben Abstand zu−1 wie zu2 haben. Diese Bedienung ist von allen Zahlenz erfüllt, die den Realteil1 haben.2
|
| |
Das geschattete Gebiet besteht aus den Punkten die die Ungleichungen |z - 2i| ≤ 3 und 1 ≤ Re z ≤ 2 erfüllen. | Die Zahlen die |z + 1| = |z - 2| erfüllen, liegen auf der Gerade von Zahlen deren Realteil 1/2 ist. |
Polarform
Anstatt komplexe Zahlen
Nachdem =x
r
=y
r
![]() ![]() ![]() ![]() |
geschrieben werden. Dies nennt man die Polarform der komlexen Zahl
![]() |
Den Winkel =y
x
Die reelle Zahl
![]() ![]() ![]() |
Beispiel 5
Schreiben Sie folgende komplexe Zahlen in Polarform:
- \displaystyle \,\,-3
Nachdem \displaystyle |\,-3\,|=3 und \displaystyle \arg (-3)=\pi, ist \displaystyle \ -3=3(\cos\pi+i\,\sin\pi). - \displaystyle \,i
Nachdem \displaystyle |\,i\,|=1 und \displaystyle \arg i = \pi/2 ist \displaystyle \ i=\cos(\pi/2)+i\,\sin(\pi/2)\,. - \displaystyle \,1-i
Der Betrag ist \displaystyle |\,1-i\,|=\sqrt{1^2+(-1)^2}=\sqrt{2}. Die Zahl liegt im vierten Quadranten, und hat den Winkel \displaystyle \pi/4 zu der positiven reellen Achse. Daher ist das Argument \displaystyle \arg (1-i)=2\pi-\pi/4=7\pi/4, und daher ist \displaystyle \ 1-i=\sqrt{2}\,\bigl(\cos(7\pi/4)+i\sin(7\pi/4)\,\bigr). - \displaystyle \,2\sqrt{3}+2i
Wir berechnen zuerst den Betrag,\displaystyle |\,2\sqrt{3}+2i\,|=\sqrt{(2\sqrt{3}\,)^2+2^2}=\sqrt{16}=4\,\mbox{.} Wir benennen das Argument \displaystyle \alpha. Das Argument erfüllt die Gleichung
\displaystyle \tan\alpha=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}} und nachdem die Zahl im ersten Quadranten liegt. ist \displaystyle \alpha=\pi/6 und daher
\displaystyle 2\sqrt{3}+2i=4\bigl(\cos\frac{\pi}{6}+i\,\sin\frac{\pi}{6}\bigr)\,\mbox{.}
Multiplikation und Division in Polarform
Des große Vorteil der Polarform ist, dass die Multiplikation und Division von komplexen Zahlen sich sehr einfach ausführen lässt. Für zwei komplexe Zahlen, \displaystyle z=|\,z\,|\,(\cos\alpha+i\sin\alpha) und \displaystyle w=|\,w\,|\,(\cos\beta+i\sin\beta), kann man mit Hilfe von trigonometrischen Identitäten zeigen, dass
\displaystyle \begin{align*}z\, w&=|\,z\,|\,|\,w\,|\,\bigl(\cos(\alpha+\beta)+i\,\sin(\alpha+\beta)\bigr)\,\mbox{,}\\[4pt] \frac{z}{w}&=\frac{|z|}{|w|}\bigl(\cos(\alpha-\beta)+i\,\sin(\alpha-\beta)\bigr)\,\mbox{.}\end{align*} |
Wenn man zwei komplexe Zahlen multipliziert, sind deren Beträge multipliziert, und deren Argumente addiert, Wenn man zwei komplexe Zahlen dividiert, werden deren Beträge dividiert, und deren Argumente subtrahiert. Zusammengefasst gilt also:
\displaystyle |\,z\, w\,|=|\,z\,|\, |\,w\,|\quad \mbox{and}\quad \arg(z\, w)=\arg\,z + \arg\,w\,\mbox{,} |
\displaystyle \Bigl|\,\frac{z}{w}\,\Bigr|=\frac{|\,z\,|}{|\,w\,|}\quad\quad\quad\; \mbox{ and}\quad \arg\Bigl(\frac{z}{w}\Bigr)=\arg \,z - \arg\,w\,\mbox{.} |
|
|
Beispiel 6
Vereinfachen Sie folgende Ausdrücke, indem Sie die Ausdrücke in Polarform schreiben:
- \displaystyle \Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/
\Bigl( -\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr)
Wir schreiben den Zähler und Nenner jeweils in Polarform\displaystyle \begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\times\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\times\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*} Es folgt jetzt, dass
\displaystyle \begin{align*}&\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl(-\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr) = \smash{\frac{\cos\dfrac{7\pi}{4}+i\,\sin\dfrac{7\pi}{4}\vphantom{\Biggl(}}{\cos\dfrac{3\pi}{4}+i\,\sin\dfrac{3\pi}{4}\vphantom{\Biggl)}}}\\[16pt] &\qquad\quad{}= \cos\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigl)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigr)= \cos\pi+i\,\sin\pi=-1\,\mbox{.}\end{align*} - \displaystyle (-2-2i)(1+i)
Wir schreiben die beiden Faktoren jeweils in Polarform\displaystyle \begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{,}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{.}\end{align*} Durch die Multiplikationsregeln der Polarform folgt, dass
\displaystyle \begin{align*}(-2-2i)(1+i)&=\sqrt8 \times \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}
Beispiel 7
- Vereinfachen Sie \displaystyle iz und \displaystyle \frac{z}{i} wennmath>\ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\Bigr)</math>. Antworten Sie in Polarform.
Nachdem \displaystyle \ i=1\times \left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right)\ folgt, dass\displaystyle \begin{align*} iz &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\Bigr)\,\mbox{,}\\[4pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)\,\Bigr) = 2\Bigl(\cos\frac{-\pi}{3}+i\,\sin\frac{-\pi}{3}\Bigr)\,\mbox{.}\end{align*} - Vereinfachen Sie \displaystyle iz und \displaystyle \frac{z}{i} wenn \displaystyle \ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)\,. Antworten Sie in Polarform.
Wir schreiben \displaystyle i in Polarform und erhalten;\displaystyle \begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}
Wir sehen, dass die Multiplikation mit i zu einer Drehung des Winkels \displaystyle \pi/2 gegen den Uhrzeigersinn führt.
|
| |
Komplexe Zahlen z, iz und z/i wo |z| = 2 and arg z = π/6. | Komplexe Zahlen z, iz und z/i wo |z| = 3 and arg z = 7π/4. |