1.2 Ableitungsregeln
Aus Online Mathematik Brückenkurs 2
(Added skype and exercise links at the bottom of the page) |
|||
Zeile 9: | Zeile 9: | ||
{{Info| | {{Info| | ||
'''Inhalt:''' | '''Inhalt:''' | ||
- | * Die Ableitung eines Produktes und eines Bruches | + | * Die Ableitung eines Produktes und eines Bruches von Funktionen |
* Die Ableitung verketteter Funktionen | * Die Ableitung verketteter Funktionen | ||
* Höhere Ableitungen | * Höhere Ableitungen | ||
Zeile 27: | Zeile 27: | ||
<div class="regel"> | <div class="regel"> | ||
'''Faktor- und Quotientenregel: ''' | '''Faktor- und Quotientenregel: ''' | ||
- | {{Abgesetzte Formel||<math>\begin{align*} \frac{d}{dx}\,\bigl(\,f(x) \, g(x) \bigr) | + | {{Abgesetzte Formel||<math> \begin{align*} |
+ | \bigl( f(x) \, g(x) \bigr)^\prime &= f^{\,\prime}(x) \, g(x) + f(x) \, g'(x) \\ | ||
+ | &\text{ und } \\ | ||
+ | \left( \frac{f(x)}{g(x)} \right)^\prime &= \frac{f^{\,\prime}(x)\, g(x) - f(x)\, g'(x)}{\bigl(g(x)\bigr)^2} \end{align*} </math>}} | ||
+ | in einer anderen Notation: | ||
+ | {{Abgesetzte Formel||<math> \frac{d}{dx}\,\bigl(\,f(x) \, g(x) \bigr) = \bigl(\, \frac{d}{dx}\,f(x) \, \bigr) \, g(x) + f(x) \,\bigl(\,\frac{d}{dx}\, g(x) \bigr) \, \text{ und } \, | ||
+ | \frac{d}{dx}\,\Bigl( \frac{f(x)}{g(x)} \Bigr) = \frac{\bigl( \frac{d}{dx}\,f(x) \bigr)\, g(x) - f(x)\, \bigl(\, \frac{d}{dx}\,g(x) \, \bigr)}{\bigl(g(x)\bigr)^2} | ||
+ | </math>}} | ||
</div> | </div> | ||
+ | |||
<div class="exempel"> | <div class="exempel"> |
Version vom 14:06, 3. Sep. 2009
Theorie | Übungen |
Inhalt:
- Die Ableitung eines Produktes und eines Bruches von Funktionen
- Die Ableitung verketteter Funktionen
- Höhere Ableitungen
Lernziele:
Nach diesem Abschnitt solltest Du folgendes wissen:
- Wie man prinzipiell jede Funktion, die aus Elementarfunktionen besteht, ableitet.
A - Die Produkt- und Quotientenregel
Mittels der Definition der Ableitung können wir Ableitungsregeln für Produkte und Quotienten von Funktionen herleiten:
Faktor- und Quotientenregel:
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
in einer anderen Notation:
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Beispiel 1
ddx(x2ex)=2xex+x2ex=(2x+x2)ex .ddx(xsinx)=1 .sinx+xcosx=sinx+xcosx
ddx(xlnx−x)=1 .lnx+xx1−1=lnx+1−1=lnx
ddxtanx=ddxsinxcosx=(cosx)2cosxcosx−sinx(−sinx)
=cos2xcos2x+sin2x=1cos2x .ddx x1+x=(
x)21
x−(1+x)12
x=x2x2
x−12
x−x2
x
=x2 .xx−1=x−12x
x
ddxxex1+x=(1+x)2(1 ex+xex)(1+x)−xex
1
=(1+x)2ex+xex+xex+x2ex−xex=(1+x)2(1+x+x2)ex .
B - Ableitung von verketteten Funktionen
Eine Funktion g(x)
![]() ![]() ![]() ![]() ![]() |
Nennen wir
Man sagt, dass die verkettete Funktion y aus einer äußeren Funktion f und einer inneren Funktion g besteht. Analog nennt man
Beispiel 2
In der Funktion
die äußere Funktion und | die innere Funktion. | ||
die äußere Ableitung und | die innere Ableitung. |
Die Ableitung der Funktion y in Bezug auf x ist durch die Kettenregel gegeben
Wenn man mit verketteten Funktionen rechnet, benennt man die äußere und innere Ableitung meist nicht mit neuen Funktionen, sondern man sagt einfach
Vergessen Sie nicht, die Produkt-und Quotientenregeln falls notwendig anzuwenden.
Beispiel 3
f(x)=sin(3x2+1)
Äußere Ableitung:Innere Ableitung:cos(3x2+1)6x
f (x)=cos(3x2+1)
6x=6xcos(3x2+1)
y=5ex2
Äußere Ableitung:Innere Ableitung:5ex22x
y =5ex22x=10xex2
- \displaystyle f(x) = e^{x\, \sin x}
\displaystyle \begin{array}{ll} \text{Äußere Ableitung:} & e^{x\, \sin x}\\ \text{Innere Ableitung:} & 1\cdot \sin x + x \cos x \end{array}
\displaystyle f^{\,\prime}(x) = e^{x\, \sin x} (\sin x + x \cos x) - \displaystyle s(t) = t^2 \cos (\ln t)
\displaystyle s'(t) = 2t \, \cos (\ln t) + t^2 \,\Bigl(-\sin (\ln t) \,\frac{1}{t}\Bigr) = 2t \cos (\ln t) - t \sin (\ln t) - \displaystyle \frac{d}{dx}\,a^x = \frac{d}{dx}\,\bigl( e^{\ln a} \bigr)^x = \frac{d}{dx}\,e^{x\ln a} = e^{x\ln a} \, \ln a = a^x \, \ln a
- \displaystyle \frac{d}{dx}\,x^a = \frac{d}{dx}\,\bigl( e^{\ln x} \bigr)^a = \frac{d}{dx}\,e^{ a \, \ln x } = e^{a \, \ln x} \cdot a \, \frac{1}{x} = x^a \cdot a \, x^{-1} = ax^{a-1}
Die Kettenregel kann mehrmals angewendet werden, um mehrfach verkettete Funktionen abzuleiten. Zum Beispiel hat die Funktion \displaystyle y= f \bigl( g(h(x))\bigr) die Ableitung
\displaystyle y'= f^{\,\prime} \bigl ( g(h(x))\bigr)
\, g'(h(x)) \, h'(x)\,\mbox{.} |
Beispiel 4
- \displaystyle \frac{d}{dx}\,\sin^3 2x = \frac{d}{dx}\,(\sin 2x)^3
= 3(\sin 2x)^2 \, \frac{d}{dx}\,\sin 2x
= 3(\sin 2x)^2 \, \cos 2x \, \frac{d}{dx}\,(2x)
\vphantom{\Bigl(}
\displaystyle \phantom{\frac{d}{dx}\,\sin^3 2x}{}= 3 \sin^2 2x\,\cos 2x\cdot 2 = 6 \sin^2 2x\,\cos 2x - \displaystyle \frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)
= \cos \bigl((x^2 -3x)^4\bigr)
\, \frac{d}{dx}\,(x^2 -3x)^4
\vphantom{\Bigl(}
\displaystyle \phantom{\frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)}{} = \cos \bigl((x^2 -3x)^4\bigr)\cdot 4 (x^2 -3x)^3 \, \frac{d}{dx}\,(x^2-3x) \vphantom{\Bigl(}
\displaystyle \phantom{\frac{d}{dx}\,\sin \bigl((x^2 -3x)^4 \bigr)}{} = \cos \bigl((x^2 -3x)^4\bigr)\cdot 4 (x^2 -3x)^3 \, (2x-3) - \displaystyle \frac{d}{dx}\,\sin^4 (x^2 -3x)
= \frac{d}{dx}\,\bigl( \sin (x^2 -3x) \bigr)^4
\vphantom{\Bigl(}
\displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \, \frac{d}{dx}\,\sin(x^2-3x) \vphantom{\Bigl(}
\displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \,\cos (x^2 -3x) \, \frac{d}{dx}(x^2 -3x) \vphantom{\Bigl(}
\displaystyle \phantom{\frac{d}{dx}\,\sin^4 (x^2 -3x)}{} = 4 \sin^3 (x^2 - 3x) \,\cos (x^2 -3x)\, (2x-3) - \displaystyle \frac{d}{dx}\,\Bigl ( e^{\sqrt{x^3-1}}\,\Bigr)
= e^{\sqrt{x^3-1}} \, \frac{d}{dx}\,\sqrt{x^3-1}
= e^{\sqrt{x^3-1}} \, \frac{1}{2 \sqrt{x^3-1}}
\, \frac{d}{dx}\,(x^3-1)
\vphantom{\Biggl(}
\displaystyle \phantom{\displaystyle \frac{d}{dx}\,\Bigl ( e^{\sqrt{x^3-1}}\,\Bigr)}{} = e^{\sqrt{x^3-1}} \, \frac{1}{2 \sqrt{x^3-1}} \cdot 3 x^2 = \frac { 3 x^2 e^{\sqrt{x^3-1}}} {2 \sqrt{x^3-1}} \vphantom{\dfrac{\dfrac{()^2}{()}}{()}}
C - Höhere Ableitungen
Falls eine Funktion mehrmals differenzierbar ist, kann man auch höhere Ableitungen berechnen, indem man die Funktion mehrmals ableitet.
Die zweite Ableitung schreibt man meistens \displaystyle f^{\,\prime\prime}, während man die dritte Ableitung als \displaystyle f^{\,(3)} schreibt, die vierte als \displaystyle f^{\,(4)} etc.
Mann kann auch \displaystyle D^2 f, \displaystyle D^3 f oder \displaystyle \frac{d^2 y}{dx^2}, \displaystyle \frac{d^3 y}{dx^3}, \displaystyle \ldots schreiben.
Beispiel 5
- \displaystyle f(x) = 3\,e^{x^2 -1}
\displaystyle f^{\,\prime}(x) = 3\,e^{x^2 -1} \, \frac{d}{dx}\,(x^2-1) = 3\,e^{x^2 -1} \cdot 2x = 6x\,e^{x^2 -1}\vphantom{\biggl(}
\displaystyle f^{\,\prime\prime}(x) = 6\,e^{x^2 -1} + 6x\,e^{x^2 -1} \cdot 2x = 6\,e^{x^2 -1}\,(1+ 2x^2) - \displaystyle y = \sin x\,\cos x
\displaystyle \frac{dy}{dx} = \cos x\,\cos x + \sin x\,(- \sin x) = \cos^2 x - \sin^2 x\vphantom{\Biggl(}
\displaystyle \frac{d^2 y}{dx^2} = 2 \cos x\,(-\sin x) - 2 \sin x \cos x = -4 \sin x \cos x - \displaystyle \frac{d}{dx}\,( e^x \sin x) = e^x \sin x + e^x \cos x
= e^x (\sin x + \cos x)
\vphantom{\Bigl(}
\displaystyle \frac{d^2}{dx^2}(e^x\sin x) = \frac{d}{dx}\,\bigl(e^x (\sin x + \cos x)\bigr) \vphantom{\Bigl(} \displaystyle \phantom{\frac{d^2}{dx^2}(e^x\sin x)}{} = e^x (\sin x + \cos x) + e^x (\cos x - \sin x) = 2\,e^x \cos x \vphantom{\bigl(}
\displaystyle \frac{d^3}{dx^3} ( e^x \sin x) = \frac{d}{dx}\,(2\,e^x \cos x) \vphantom{\Bigl(} \displaystyle \phantom{\frac{d^3}{dx^3} ( e^x \sin x)}{} = 2\,e^x \cos x + 2\,e^x (-\sin x) = 2\,e^x ( \cos x - \sin x )
Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor
Keine Fragen mehr? Dann mache weiter mit den Übungen .