3.2 Polarform
Aus Online Mathematik Brückenkurs 2
(Änderung 5256 von Silke2 (Diskussion) wurde rückgängig gemacht.) |
(Änderung 5255 von Silke2 (Diskussion) wurde rückgängig gemacht.) |
||
Zeile 215: | Zeile 215: | ||
- | == D - | + | == D - Polarform == |
- | Anstatt komplexe Zahlen <math>z=x+iy</math> mit deren kartesischen Koordinaten zu beschreiben, kann man | + | Anstatt komplexe Zahlen <math>z=x+iy</math> mit deren kartesischen Koordinaten zu beschreiben, kann man polare Koordinaten verwenden. Die Darstellung einer komplexen Zahl erfolgt durch Betrag und Argument (Winkel) der Zahl (siehe Bild). |
<center>{{:3.2 - Bild - Polarform von z}}</center> | <center>{{:3.2 - Bild - Polarform von z}}</center> | ||
Zeile 226: | Zeile 226: | ||
<div class="regel">{{Abgesetzte Formel||<math>z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{}</math>}}</div> | <div class="regel">{{Abgesetzte Formel||<math>z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{}</math>}}</div> | ||
- | geschrieben werden. Dies nennt man die | + | geschrieben werden. Dies nennt man die Polarform der komlexen Zahl <math>z</math>. Der Winkel <math>\alpha</math> wird das Argument von <math>z</math> genannt und wird geschrieben als |
<div class="regel">{{Abgesetzte Formel||<math>\alpha=\arg\,z\,\mbox{.}</math>}}</div> | <div class="regel">{{Abgesetzte Formel||<math>\alpha=\arg\,z\,\mbox{.}</math>}}</div> | ||
- | Den Winkel <math>\alpha</math> kann man bestimmen, indem man die Gleichung <math>\tan\alpha=y/x</math> löst. | + | Den Winkel <math>\alpha</math> kann man bestimmen, indem man die Gleichung <math>\tan\alpha=y/x</math> löst. Nachdem diese Gleichung unendlich viele Lösungen hat, ist das Argument nicht eindeutig definiert. Meistens wählt man das Argument so, dass es zwischen 0 und <math>2\pi</math> oder zwischen <math>-\pi</math> und <math>\pi</math> liegt. Dabei ist darauf zu achten, den Winkel dazu anzupassen in welchem Quadranten sich die komplexe Zahl in der Zahlenebene befindet. |
Die reelle Zahl <math>r</math> ist der Abstand der Zahl zum Punkt (0,0), also der Betrag von <math>z</math> | Die reelle Zahl <math>r</math> ist der Abstand der Zahl zum Punkt (0,0), also der Betrag von <math>z</math> | ||
Zeile 240: | Zeile 240: | ||
- | Schreibe folgende komplexe Zahlen in | + | Schreibe folgende komplexe Zahlen in Polarform: |
<ol type="a"> | <ol type="a"> | ||
<li><math>\,\,-3</math> | <li><math>\,\,-3</math> | ||
Zeile 306: | Zeile 306: | ||
- | Vereinfache folgende Ausdrücke, indem Du die Ausdrücke in | + | Vereinfache folgende Ausdrücke, indem Du die Ausdrücke in Polarform schreibst. |
<ol type="a"> | <ol type="a"> | ||
<li><math>\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ | <li><math>\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ | ||
Zeile 312: | Zeile 312: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | Wir schreiben den Zähler und Nenner jeweils in | + | Wir schreiben den Zähler und Nenner jeweils in Polarform. |
{{Abgesetzte Formel||<math>\begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*}</math>}} | {{Abgesetzte Formel||<math>\begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*}</math>}} | ||
Es folgt jetzt, dass | Es folgt jetzt, dass | ||
Zeile 321: | Zeile 321: | ||
<br/> | <br/> | ||
<br/> | <br/> | ||
- | Wir schreiben die beiden Faktoren jeweils in | + | Wir schreiben die beiden Faktoren jeweils in Polarform. |
{{Abgesetzte Formel||<math>\begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{}\end{align*}</math>}} | {{Abgesetzte Formel||<math>\begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{}\end{align*}</math>}} | ||
- | Durch die Multiplikationsregeln der | + | Durch die Multiplikationsregeln der Polarform folgt, dass |
{{Abgesetzte Formel||<math>\begin{align*}(-2-2i)(1+i)&=\sqrt8 \cdot \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}</math>}} | {{Abgesetzte Formel||<math>\begin{align*}(-2-2i)(1+i)&=\sqrt8 \cdot \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}</math>}} | ||
</li> | </li> | ||
Zeile 334: | Zeile 334: | ||
<ol type="a"> | <ol type="a"> | ||
- | <li> Vereinfache <math>iz</math> und <math>\frac{z}{i}</math> wenn<math>\ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\,\Bigr)</math>. | + | <li> Vereinfache <math>iz</math> und <math>\frac{z}{i}</math> wenn<math>\ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\,\Bigr)</math>. Gib die Antwort in Polarform an. |
<br/> | <br/> | ||
<br/> | <br/> | ||
Zeile 341: | Zeile 341: | ||
</li> | </li> | ||
<br/> | <br/> | ||
- | <li> Vereinfache <math>iz</math> und <math>\frac{z}{i}</math>, wenn <math>\ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)</math>. | + | <li> Vereinfache <math>iz</math> und <math>\frac{z}{i}</math>, wenn <math>\ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right)</math>. Antworte in Polarform. |
<br/> | <br/> | ||
<br/> | <br/> | ||
- | Wir schreiben <math>i</math> in | + | Wir schreiben <math>i</math> in Polarform und erhalten |
{{Abgesetzte Formel||<math>\begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\, \Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}</math>}} | {{Abgesetzte Formel||<math>\begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\, \Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}</math>}} | ||
</li> | </li> |
Version vom 17:52, 14. Sep. 2009
Theorie | Übungen |
Inhalt:
- Die komplexe Zahlenebene
- Addition und Subtraktion in der komplexen Zahlenebene
- Betrag und Argument
- Polarkoordinaten
- Multiplikation und Division in Polarform
- Multiplikation mit i in der komplexen Zahlenebene
Lernziele:
Nach diesem Abschnitt solltest Du folgendes wissen:
- Wie die arithmetischen Rechnungen in der komplexen Zahlenebene geometrisch zu verstehen sind.
- Wie man komplexe Zahlen zwischen der Form a + ib und der Schreibweise in Polarkoordinaten umwandelt.
A - Die komplexe Zahlenebene
Weil eine komplexe Zahl b)
Diese geometrische Interpretation der komplexen Zahlen nennt man die komplexe Zahlenebene.
Hinweis: Die reellen Zahlen sind komplexe Zahlen, bei denen der Imaginärteil 0 ist und die daher auf der reellen Achse liegen. Daher kann man die Erweiterung der reellen Zahlen zu den komplexen Zahlen so sehen, dass man die Dimension der Zahlengerade auf eine Ebene erweitert.
Generell kann man komplexe Zahlen wie Vektoren behandeln.
|
| |||
Geometrisch erhält man die Zahl z + w indem man den Vektor von 0 bis w parallel zu z verschiebt. | Die Subtraktion z - w kann wie z + (-w) geschrieben werden und geometrisch interpretiert werden, als ob man den Vektor von 0 bis -w parallel bis z verschiebt. |
Beispiel 1
Mit
Wir haben
|
|
Beachte, dass die konjugiert komplexen Zahlen Spiegelbilder in der reellen Achse sind.
Beispiel 2
Zeichne alle Zahlen
Rez ,3
−1 .Imz
2
Die erste Ungleichung definiert die linke Fläche und die zweite Ungleichung definiert die rechte Fläche.
|
| |
Alle Zahlen die Re z ≥ 3 erfüllen, haben einen Realteil, der größer als 3. | Alle Zahlen die -1 < Im z ≤ 2 erfüllen, haben einen Imaginärteil, der zwischen -1 und 2 liegt. Die untere Gerade ist gestrichelt und dies bedeutet, dass die Punkte auf dieser Gerade nicht zum Gebiet gehören. |
B - Der Betrag komplexer Zahlen
Die reellen Zahlen können wir einfach ordnen, da größere Zahlen rechts von kleineren Zahlen auf der Zahlengerade liegen.
Für komplexe Zahlen ist dies aber nicht möglich. Man kann die komplexen Zahlen nicht nach Größe ordnen. Zum Beispiel kann man nicht sagen, ob
Für eine komplexe Zahl z
![]() ![]() ![]() |
Wir sehen hier, dass z
z
0
z
=
a2=
a
0)
b)
C - Abstand zwischen komplexen Zahlen
Mit der Formel für den Abstand zwischen zwei Punkten in einer Ebene können wir den Abstand \displaystyle s zwischen zwei komplexen Zahlen \displaystyle z=a+ib und \displaystyle w=c+id (siehe Bild) mit der Abstandsformel berechnen
\displaystyle s=\sqrt{(a-c)^2+(b-d)^2}\,\mbox{.} |
Da \displaystyle z-w=(a-c)+i(b-d), erhalten wir
Beispiel 3
Zeichne in der komplexen Zahlenebene die folgende Menge.
|
|
|
|
|
|
|
|
Beispiel 4
Zeichne in der komplexen Zahlenebene alle Zahlen ein, die die folgenden (Un)gleichungen erfüllen:
- \displaystyle \, \left\{ \eqalign{&|\,z-2i\,|\le 3\cr &1\le\mathop{\rm Re} z\le 2}\right.
Die erste Ungleichung gibt an, dass die Zahlen im Kreis mit dem Radius 3 um den Mittelpunkt \displaystyle 2i liegen müssen. Die zweite Ungleichung ist ein vertikaler Streifen von Zahlen, deren Realteil zwischen 1 und 2 liegt. Die Zahlen, die in beiden Gebieten liegen, erfüllen auch beide Ungleichungen.
- \displaystyle \, |\,z+1\,|=|\,z-2\,|
Die Gleichung kann wie \displaystyle |\,z-(-1)\,|=|\,z-2\,| geschrieben werden. Also muss \displaystyle z denselben Abstand zu \displaystyle -1 wie zu \displaystyle 2 haben. Diese Bedingung ist von allen Zahlen \displaystyle z erfüllt, die den Realteil \displaystyle 1/2 haben.
|
| |
Das gestrichelte Gebiet besteht aus den Punkten, die die Ungleichungen |z - 2i| ≤ 3 und 1 ≤ Re z ≤ 2 erfüllen. | Die Zahlen, die |z + 1| = |z - 2| erfüllen, liegen auf der Gerade von Zahlen deren Realteil 1/2 ist. |
D - Polarform
Anstatt komplexe Zahlen \displaystyle z=x+iy mit deren kartesischen Koordinaten zu beschreiben, kann man polare Koordinaten verwenden. Die Darstellung einer komplexen Zahl erfolgt durch Betrag und Argument (Winkel) der Zahl (siehe Bild).
Nachdem \displaystyle \,\cos\alpha = x/r\, und \displaystyle \,\sin\alpha = y/r\, ist \displaystyle \,x = r\cos\alpha\, und \displaystyle \,y= r\sin\alpha. Die Zahl \displaystyle z=x+iy kann also als
\displaystyle z=r\cos\alpha + i\,r\sin\alpha = r(\cos\alpha + i\,\sin\alpha)\,\mbox{} |
geschrieben werden. Dies nennt man die Polarform der komlexen Zahl \displaystyle z. Der Winkel \displaystyle \alpha wird das Argument von \displaystyle z genannt und wird geschrieben als
\displaystyle \alpha=\arg\,z\,\mbox{.} |
Den Winkel \displaystyle \alpha kann man bestimmen, indem man die Gleichung \displaystyle \tan\alpha=y/x löst. Nachdem diese Gleichung unendlich viele Lösungen hat, ist das Argument nicht eindeutig definiert. Meistens wählt man das Argument so, dass es zwischen 0 und \displaystyle 2\pi oder zwischen \displaystyle -\pi und \displaystyle \pi liegt. Dabei ist darauf zu achten, den Winkel dazu anzupassen in welchem Quadranten sich die komplexe Zahl in der Zahlenebene befindet.
Die reelle Zahl \displaystyle r ist der Abstand der Zahl zum Punkt (0,0), also der Betrag von \displaystyle z
\displaystyle r=\sqrt{x^2+y^2}=|\,z\,|\,\mbox{.} |
Beispiel 5
Schreibe folgende komplexe Zahlen in Polarform:
- \displaystyle \,\,-3
Da \displaystyle |\,-3\,|=3 und \displaystyle \arg (-3)=\pi, ist \displaystyle \ -3=3(\cos\pi+i\,\sin\pi). - \displaystyle \,i
Da \displaystyle |\,i\,|=1 und \displaystyle \arg i = \pi/2, ist \displaystyle \ i=\cos(\pi/2)+i\,\sin(\pi/2)\,. - \displaystyle \,1-i
Der Betrag ist \displaystyle |\,1-i\,|=\sqrt{1^2+(-1)^2}=\sqrt{2}. Die Zahl liegt im vierten Quadranten, und hat den Winkel \displaystyle \pi/4 zu der positiven reellen Achse.
Daher ist das Argument \displaystyle \arg (1-i)=2\pi-\pi/4=7\pi/4.
Und daher ist \displaystyle \ 1-i=\sqrt{2}\,\bigl(\cos(7\pi/4)+i\sin(7\pi/4)\,\bigr). - \displaystyle \,2\sqrt{3}+2i
Wir berechnen zuerst den Betrag\displaystyle |\,2\sqrt{3}+2i\,|=\sqrt{(2\sqrt{3}\,)^2+2^2}=\sqrt{16}=4\,\mbox{.} Wir benennen das Argument \displaystyle \alpha. Das Argument erfüllt die Gleichung
\displaystyle \tan\alpha=\frac{2}{2\sqrt{3}}=\frac{1}{\sqrt{3}} und da die Zahl im ersten Quadranten liegt, ist \displaystyle \alpha=\pi/6 und daher
\displaystyle 2\sqrt{3}+2i=4\bigl(\cos\frac{\pi}{6}+i\,\sin\frac{\pi}{6}\bigr)\,\mbox{.}
E - Multiplikation und Division in Polarform
Der große Vorteil der Polarform ist, dass die Multiplikation und Division von komplexen Zahlen sich sehr einfach ausführen lässt. Für zwei komplexe Zahlen \displaystyle z=|\,z\,|\,(\cos\alpha+i\sin\alpha) und \displaystyle w=|\,w\,|\,(\cos\beta+i\sin\beta) kann man mit Hilfe von trigonometrischen Identitäten zeigen, dass
\displaystyle \begin{align*}z\, w&=|\,z\,|\,|\,w\,|\,\bigl(\cos(\alpha+\beta)+i\,\sin(\alpha+\beta)\bigr)\,\mbox{,}\\[4pt] \frac{z}{w}&=\frac{|z|}{|w|}\bigl(\cos(\alpha-\beta)+i\,\sin(\alpha-\beta)\bigr)\,\mbox{.}\end{align*} |
Wenn man zwei komplexe Zahlen multipliziert, werden deren Beträge multipliziert und deren Argumente addiert. Wenn man zwei komplexe Zahlen dividiert, werden deren Beträge dividiert und deren Argumente subtrahiert. Zusammengefasst gilt also
\displaystyle |\,z\, w\,|=|\,z\,|\, |\,w\,|\quad \mbox{und}\quad \arg(z\, w)=\arg\,z + \arg\,w\,\mbox{,} |
\displaystyle \Bigl|\,\frac{z}{w}\,\Bigr|=\frac{|\,z\,|}{|\,w\,|}\quad\quad\quad\; \mbox{ und}\quad \arg\Bigl(\frac{z}{w}\Bigr)=\arg \,z - \arg\,w\,\mbox{.} |
|
|
Beispiel 6
Vereinfache folgende Ausdrücke, indem Du die Ausdrücke in Polarform schreibst.
- \displaystyle \Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/
\Bigl( -\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr)
Wir schreiben den Zähler und Nenner jeweils in Polarform.\displaystyle \begin{align*}\frac{1}{\sqrt2} -\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{7\pi}{4}+i\,\sin\frac{7\pi}{4}\Bigr)\\[4pt] -\frac{1}{\sqrt2} +\frac{i}{\sqrt2} &= 1\cdot\Bigl(\cos\frac{3\pi}{4}+i\,\sin\frac{3\pi}{4}\Bigr)\end{align*} Es folgt jetzt, dass
\displaystyle \begin{align*}&\Bigl(\frac{1}{\sqrt2} -\frac{i}{\sqrt2}\Bigr) \Big/ \Bigl(-\frac{1}{\sqrt2} +\frac{i}{\sqrt2}\Bigr) = \smash{\frac{\cos\dfrac{7\pi}{4}+i\,\sin\dfrac{7\pi}{4}\vphantom{\Biggl(}}{\cos\dfrac{3\pi}{4}+i\,\sin\dfrac{3\pi}{4}\vphantom{\Biggl)}}}\\[16pt] &\qquad\quad{}= \cos\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigl)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{3\pi}{4}\Bigr)= \cos\pi+i\,\sin\pi=-1\,\mbox{.}\end{align*} - \displaystyle (-2-2i)(1+i)
Wir schreiben die beiden Faktoren jeweils in Polarform.\displaystyle \begin{align*}-2-2i&=\sqrt8\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{}\\[4pt] 1+i&=\sqrt2\Bigl(\cos\frac{\pi}{4}+i\,\sin\frac{\pi}{4}\Bigr)\,\mbox{}\end{align*} Durch die Multiplikationsregeln der Polarform folgt, dass
\displaystyle \begin{align*}(-2-2i)(1+i)&=\sqrt8 \cdot \sqrt2\,\Bigl(\cos\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)+i\,\sin\Bigl(\frac{5\pi}{4}+\frac{\pi}{4}\Bigr)\Bigr)\\[4pt] &=4\Bigl(\cos\frac{3\pi}{2}+i\,\sin\frac{3\pi}{2} \Bigr)=-4i\,\mbox{.}\end{align*}
Beispiel 7
- Vereinfache \displaystyle iz und \displaystyle \frac{z}{i} wenn\displaystyle \ z=2\Bigl(\cos\frac{\pi}{6}+i\sin\frac{\pi}{6}\,\Bigr). Gib die Antwort in Polarform an.
Da \displaystyle \ i=1\cdot \left(\cos\frac{\pi}{2}+i\sin\frac{\pi}{2}\right) folgt, dass\displaystyle \begin{align*} iz &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}+\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{2\pi}{3}+i\sin\frac{2\pi}{3}\Bigr)\,\mbox{,}\\[4pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{\pi}{6}-\frac{\pi}{2}\Bigr)\,\Bigr) = 2\Bigl(\cos\frac{-\pi}{3}+i\,\sin\frac{-\pi}{3}\Bigr)\,\mbox{.}\end{align*} - Vereinfache \displaystyle iz und \displaystyle \frac{z}{i}, wenn \displaystyle \ z=3\left(\cos\frac{7\pi}{4}+i\sin\frac{7\pi}{4}\right). Antworte in Polarform.
Wir schreiben \displaystyle i in Polarform und erhalten\displaystyle \begin{align*} iz &= 3\Bigl(\cos\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\, \Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}+\frac{\pi}{2}\Bigr)\,\Bigr) = 3\Bigl(\cos\frac{9\pi}{4}+i\sin\frac{9\pi}{4}\Bigr)\\[4pt] &= 3\left(\cos\frac{\pi}{4}+i\sin\frac{\pi}{4}\right)\,\mbox{,}\\[6pt] \frac{z}{i} &= 2\Bigl(\cos\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)+i\,\sin\Bigl(\frac{7\pi}{4}-\frac{\pi}{2}\Bigr)\,\Bigr)= 2\Bigl(\cos\frac{5\pi}{4}+i\,\sin\frac{5\pi}{4}\Bigr)\,\mbox{.}\end{align*}
Wir sehen, dass die Multiplikation mit i zu einer Drehung des Winkels \displaystyle \pi/2 gegen den Uhrzeigersinn führt.
|
| |
Komplexe Zahlen z, iz und z/i, bei denen |z| = 2 und arg z = π/6. | Komplexe Zahlen z, iz und z/i, bei denen |z| = 3 und arg z = 7π/4. |
Noch Fragen zu diesem Kapitel? Dann schau nach im Kursforum (Du findest den Link in der Student Lounge) oder frag nach per Skype bei ombTutor
Keine Fragen mehr? Dann mache weiter mit den Übungen .