Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

2.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 66: Zeile 66:
|-
|-
|c)
|c)
-
|width="100%"| Calculate the area of the finite region between the curves <math> y=\frac{1}{4}x^2+2</math> and<math>y=8-\frac{1}{8}x^2</math> (Swedish A-level 1965).
+
|width="100%"| Calculate the area of the finite region between the curves <math> y=\frac{1}{4}x^2+2</math> and <math>y=8-\frac{1}{8}x^2</math> (Swedish A-level 1965).
|-
|-
|d)
|d)
-
|width="100%"| Calculate the area of the finite region enclosed by the curves <math>y=x+2, y=1</math> and <math>y=\frac{1}{x}</math>.
+
|width="100%"| Calculate the area of the finite region enclosed by the curves <math> y=x+2, y=1 </math> and <math> y=\frac{1}{x}</math>.
|-
|-
|e)
|e)

Version vom 12:43, 7. Aug. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 2.1:1

Interpret each integral as an area, and determine its value.

a) 212dx  b) 01(2x+1)dx 
c) 02(32x)dx  d) 21xdx 

Exercise 2.1:2

Calculate the integrals

a) 02(x2+3x3)dx  b) 21(x2)(x+1)dx 
c) 49x1xdx  d) 14x2xdx 

Exercise 2.1:3

Calculate the integrals

a) sinxdx  b) 2sinxcosxdx 
c) e2x(ex+1)dx  d) xx2+1dx 

Exercise 2.1:4

a) Calculate the area between the curve y=sinx and the x-axis when 0x45.
b) Calculate the area under the curve y=x2+2x+2 and above the x-axis.
c) Calculate the area of the finite region between the curves y=41x2+2 and y=881x2 (Swedish A-level 1965).
d) Calculate the area of the finite region enclosed by the curves y=x+2y=1 and y=x1.
e) Calculate the area of the region given by the inequality, x2yx+2.

Exercise 2.1:5

Calculate the integral

a) dxx+9x  (HINT: multiply the top and bottom by the conjugate of the denominator)
b) sin2x dx  (HINT: rewrite the integrand using a trigonometric formula)