Lösung 2.3:1a
Aus Online Mathematik Brückenkurs 2
The formula for integration by parts reads
![]() ![]() ![]() ![]() |
where (x)
If we are to use integration by parts, the integrand has to be divided up into two factors, a factor (x)
In the integral
![]() ![]() |
it can seem appropriate to choose (x)=2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
It remains only to integrate
\displaystyle \begin{align}
\phantom{\int 2x\cdot e^{-x}\,dx}{} &= \rlap{-2xe^{-x} + 2\bigl(-e^{-x}\bigr) + C}\phantom{2x\cdot \bigl(-e^{-x}\bigr) - \int 2\cdot \bigl(-e^{-x}\bigr)\,dx}\\[5pt] &= -2xe^{-x} - 2e^{-x} + C\\[5pt] &= -2(x+1)e^{-x} + C\,\textrm{.} \end{align} |