Lösung 1.2:3f
Aus Online Mathematik Brückenkurs 2
We have no differentiation rule for a function raised to another function, but instead we rewrite
\displaystyle a^{b}=e^{\ln a^{b}}=e^{b\ln a},
which, in our case, gives
\displaystyle x^{\tan x}=e^{\tan x\centerdot \ln x}
(*)
Now, we obtain the derivative by first using the chain rule
\displaystyle \frac{d}{dx}e^{\left\{ \left. \tan x\centerdot \ln x \right\} \right.}=e^{\left\{ \left. \tan x\centerdot \ln x \right\} \right.}\centerdot \left( \left\{ \left. \tan x\centerdot \ln x \right\} \right. \right)^{\prime }
and then the product rule:
\displaystyle \begin{align}
& =e^{\tan x\centerdot \ln x}\left( \left( \tan x \right)^{\prime }\centerdot \ln x+\tan x\centerdot \left( \ln x \right)^{\prime } \right) \\
& =e^{\tan x\centerdot \ln x}\left( \frac{1}{\cos ^{2}x}\centerdot \ln x+\tan x\centerdot \frac{1}{x} \right) \\
& =e^{\tan x\centerdot \ln x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\
& =x^{\tan x}\left( \frac{\ln x}{\cos ^{2}x}+\frac{\tan x}{x} \right) \\
\end{align}
where we have used (*) in reverse.