Lösung 2.1:4c
Aus Online Mathematik Brückenkurs 2
First, we need a picture of what the region looks like.
Both curves,
The region is bounded above by the parabola
Area =
ba
8−81x2
−
41x2+2
dx
The integrand is the
At the points where the curves intersect each other, the
y=8−81x2y=41x2+2
If we eliminate
If we move the
i.e.
41+81
x2=683x2=6x2=16
The
The area of the area between the curves is given by
\displaystyle \begin{align}
& \text{Area}=\int\limits_{-4}^{4}{\left( \left( 8-\frac{1}{8}x^{2} \right)-\left( \frac{1}{4}x^{2}+2 \right) \right)}\,dx \\
& =\int\limits_{-4}^{4}{\left( 8-\frac{1}{8}x^{2}-\frac{1}{4}x^{2}-2 \right)}\,dx \\
& =\int\limits_{-4}^{4}{\left( 6-\left( \frac{1}{8}+\frac{1}{4} \right)x^{2} \right)}\,dx \\
& =\int\limits_{-4}^{4}{\left( 6-\frac{3}{8}x^{2} \right)}\,dx \\
& =\left[ 6x-\frac{3}{8}\frac{x^{3}}{3} \right]_{-4}^{4} \\
& =\left[ 6x-\frac{x^{3}}{8} \right]_{-4}^{4} \\
& =6\centerdot 4-\frac{4^{3}}{8}-\left( 6\left( -4 \right)-\frac{\left( -4 \right)^{3}}{8} \right) \\
& =24-8+24-8=32 \\
\end{align}