Lösung 3.3:2c
Aus Online Mathematik Brückenkurs 2
We write
cos
+isin
-1-i=
2
cos45
+isin45
Using de Moivre's formula, the equation can now be written as
cos5
+isin5
=
2
cos45
+isin45
If we identify the magnitude and argument on both sides, we get
r5=
25
=45
+2n
n an arbitrary integer
(The arguments
This gives that
r=
52=
21
2
1
5=21
10
=51
45
+2n
=
4+52n
n an arbitrary integer
If we investigate the argument
4
4+52
4+54
4+56
4+58
since these angle values then repeat to within a multiple of
In summary, the roots of the equation are
10
cos
4+52n
+isin
4+52n
for
1
2
3