Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:2c

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

We write z and the right-hand side -1-i in polar form


z=rcos+isin-1-i=2cos45+isin45 


Using de Moivre's formula, the equation can now be written as


r5cos5+isin5=2cos45+isin45 


If we identify the magnitude and argument on both sides, we get


r5=25=45+2nn an arbitrary integer  


(The arguments 5 and 45 can differ by a multiple of 2 and still correspond to the same complex number.)

This gives that


r=52=21215=2110=5145+2n=4+52nn an arbitrary integer  


If we investigate the argument more closely, we see that it assumes essentially only five different values,


4 4+52 4+54 4+56 and  4+58


since these angle values then repeat to within a multiple of 2.

In summary, the roots of the equation are


z=2110cos4+52n+isin4+52n 


for n=0 1 2 3 and 4