Lösung 1.3:3a
Aus Online Mathematik Brückenkurs 2
Lokale Extrempunkte einer Funktion sind entweder:
- stationäre Punkte, mit
f ,(x)=0
- Singuläre Punkte, in denen die Funktion nicht differenzierbar ist, oder
- Endpunkte.
Da die Funktion ein Polynom ist, ist sie überall definiert, und überall differenzierbar. Also gibt es keine Extrempunkte die die Bedienungen 2 und 3 erfüllen.
Die stationären Punkte erhalten wir mitden Nullstellen der Ableitung
![]() ![]() ![]() |
Im letzten Schritt, sehen wir, dass die Ableitung null ist, wenn einer der Faktoren null ist.
Wir lösen diese Gleichung durch quadratische Ergänzung,
und erhalten
diese Gleichung hat die Wurzel
Also hat Ableitung die Nullstellen
Nachdem die Ableitung
![]() |
ist, machen wir eine Vorzeichentabelle mit den einzelnen Faktoren
| | | |||
| | | | | |
| | | | | |
Mit den Rechenregeln +=+
+=−
−=+
| | | |||
\displaystyle f^{\,\prime}(x) | \displaystyle + | \displaystyle 0 | \displaystyle - | \displaystyle 0 | \displaystyle - |
\displaystyle f(x) | \displaystyle \nearrow | \displaystyle 0 | \displaystyle \searrow | \displaystyle -27 | \displaystyle \searrow |
Hier sehen wir dass \displaystyle x=0 ein lokales Minimum ist, und dass \displaystyle x=3 ein Sattelpunkt ist (und daher kein Extrempunkt).