f(x)=limh0hf(x+h)−f(x) wobei f(x)=x2−3x+1 f(x)=limh0h(x+h)2−3(x+h)+1−(x2−3x+1)=limh0hx2+2hx+h2−3x−3h+1−x2+3x+1=limh0h2hx+h2−3h=limh02x+h−3=2x−3