Processing Math: 69%
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.3:3a

Aus Online Mathematik Brückenkurs 2

Wechseln zu: Navigation, Suche

Lokale Extremstellen einer Funktion sind entweder:

  1. stationäre Stellen mit f(x)=0,
  2. singuläre Stellen, in denen die Funktion nicht differenzierbarbar ist, oder
  3. Randstellen.

Da die Funktion ein Polynom ist, ist sie überall definiert und überall differenzierbar. Es gibt also keine Extremstellen, die die Bedienungen 2 und 3 erfüllen.

Die stationären Stellen erhalten wir mit den Nullstellen der Ableitung.

f(x)=4x3+83x2182x=4x3+24x236x=4x(x26x+9)


Im letzten Schritt sehen wir, dass die Ableitung null ist, wenn einer der Faktoren null ist.

x26x+9=0.

Wir lösen diese Gleichung durch quadratische Ergänzung

(x3)232+9=0

und erhalten

(x3)2=0

Diese Gleichung hat die Wurzel x=3.

Also hat Ableitung die Nullstellen x=0 und x=3.

Nachdem die Ableitung

f(x)=4x(x3)2

ist, machen wir eine Vorzeichentabelle mit den einzelnen Faktoren 4x und (x3)2.

x 0 3
4x + 0
(x3)2 + + + 0 +

Mit den Rechenregeln ++=+, += und =+ für die Vorzeichen, erhalten wir folgende Vorzeichentabelle für die Ableitung:

x 0 3
\displaystyle f^{\,\prime}(x) \displaystyle + \displaystyle 0 \displaystyle - \displaystyle 0 \displaystyle -
\displaystyle f(x) \displaystyle \nearrow \displaystyle 0 \displaystyle \searrow \displaystyle -27 \displaystyle \searrow

Hier sehen wir, dass \displaystyle x=0 ein lokales Maximum ist, und dass \displaystyle x=3 ein Sattelpunkt ist (und daher kein Extrempunkt).