Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

2.1 Übungen

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
(Translated links into English)
Zeile 3: Zeile 3:
| style="border-bottom:1px solid #000" width="5px" |  
| style="border-bottom:1px solid #000" width="5px" |  
{{Ej vald flik|[[2.1 Inledning till integraler|Theory]]}}
{{Ej vald flik|[[2.1 Inledning till integraler|Theory]]}}
-
{{Vald flik|[[2.1 Exercises|Exercises]]}}
+
{{Vald flik|[[2.1 Övningar|Exercises]]}}
| style="border-bottom:1px solid #000" width="100%"|  
| style="border-bottom:1px solid #000" width="100%"|  
|}
|}
Zeile 22: Zeile 22:
|width="50%"| <math>\displaystyle\int_{-1}^{2}|x| \, dx</math>
|width="50%"| <math>\displaystyle\int_{-1}^{2}|x| \, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:1|Lösning a|Lösning 2.1:1a|Lösning b|Lösning 2.1:1b|Lösning c|Lösning 2.1:1c|Lösning d|Lösning 2.1:1d}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.1:1|Solution a|Lösning 2.1:1a|Solution b|Lösning 2.1:1b|Solution c|Lösning 2.1:1c|Solution d|Lösning 2.1:1d}}
===Exercise 2.1:2===
===Exercise 2.1:2===
Zeile 38: Zeile 38:
|width="50%"| <math>\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx</math>
|width="50%"| <math>\displaystyle\int_{1}^{4} \displaystyle\frac{\sqrt{x}}{x^2}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:2|Lösning a|Lösning 2.1:2a|Lösning b|Lösning 2.1:2b|Lösning c|Lösning 2.1:2c|Lösning d|Lösning 2.1:2d}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.1:2|Solution a|Lösning 2.1:2a|Solution b|Lösning 2.1:2b|Solution c|Lösning 2.1:2c|Solution d|Lösning 2.1:2d}}
===Exercise 2.1:3===
===Exercise 2.1:3===
Zeile 54: Zeile 54:
|width="50%"| <math>\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx</math>
|width="50%"| <math>\displaystyle\int \displaystyle\frac{x^2+1}{x}\, dx</math>
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:3|Lösning a|Lösning 2.1:3a|Lösning b|Lösning 2.1:3b|Lösning c|Lösning 2.1:3c|Lösning d|Lösning 2.1:3d}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.1:3|Solution a|Lösning 2.1:3a|Solution b|Lösning 2.1:3b|Solution c|Lösning 2.1:3c|Solution d|Lösning 2.1:3d}}
===Exercise 2.1:4===
===Exercise 2.1:4===
Zeile 74: Zeile 74:
|width="100%"| Calculate the area of the region given by the inequality, <math>x^2\le y\le x+2</math>.
|width="100%"| Calculate the area of the region given by the inequality, <math>x^2\le y\le x+2</math>.
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:4|Lösning a|Lösning 2.1:4a|Lösning b|Lösning 2.1:4b|Lösning c|Lösning 2.1:4c|Lösning d|Lösning 2.1:4d|Lösning e|Lösning 2.1:4e}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.1:4|Solution a|Lösning 2.1:4a|Solution b|Lösning 2.1:4b|Solution c|Lösning 2.1:4c|Solution d|Lösning 2.1:4d|Solution e|Lösning 2.1:4e}}
===Exercise 2.1:5===
===Exercise 2.1:5===
Zeile 86: Zeile 86:
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (HINT: rewrite the integrand using a trigonometric formula)
|width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (HINT: rewrite the integrand using a trigonometric formula)
|}
|}
-
</div>{{#NAVCONTENT:Svar|Svar 2.1:5|Lösning a|Lösning 2.1:5a|Lösning b|Lösning 2.1:5b}}
+
</div>{{#NAVCONTENT:Answer|Svar 2.1:5|Solution a|Lösning 2.1:5a|Solution b|Lösning 2.1:5b}}

Version vom 08:55, 3. Sep. 2008

 
  1. REDIRECT Template:Nicht gewählter Tab
  2. REDIRECT Template:Gewählter Tab
 

Exercise 2.1:1

Interpret each integral as an area, and determine its value.

a) 212dx  b) 01(2x+1)dx 
c) 02(32x)dx  d) 21xdx 

Exercise 2.1:2

Calculate the integrals

a) 02(x2+3x3)dx  b) 21(x2)(x+1)dx 
c) 49x1xdx  d) 14x2xdx 

Exercise 2.1:3

Calculate the integrals

a) sinxdx  b) 2sinxcosxdx 
c) e2x(ex+1)dx  d) xx2+1dx 

Exercise 2.1:4

a) Calculate the area between the curve y=sinx and the x-axis when 0x45.
b) Calculate the area under the curve y=x2+2x+2 and above the x-axis.
c) Calculate the area of the finite region between the curves y=41x2+2 and y=881x2 (Swedish A-level 1965).
d) Calculate the area of the finite region enclosed by the curves y=x+2y=1 and y=x1.
e) Calculate the area of the region given by the inequality, x2yx+2.

Exercise 2.1:5

Calculate the integral

a) dxx+9x  (HINT: multiply the top and bottom by the conjugate of the denominator)
b) sin2x dx  (HINT: rewrite the integrand using a trigonometric formula)