Processing Math: Done
2.1 Übungen
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K (Robot: Automated text replacement (-{{Vald flik +{{Selected tab)) |
K |
||
Zeile 81: | Zeile 81: | ||
{| width="100%" cellspacing="10px" | {| width="100%" cellspacing="10px" | ||
|a) | |a) | ||
- | |width="100%"| <math>\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad</math> ( | + | |width="100%"| <math>\displaystyle \int \displaystyle\frac{dx}{\sqrt{x+9}-\sqrt{x}}\quad</math> (Hint: multiply the top and bottom by the conjugate of the denominator) |
|- | |- | ||
|b) | |b) | ||
- | |width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> ( | + | |width="100%"| <math>\displaystyle \int \sin^2 x\ dx\quad</math> (Hint: rewrite the integrand using a trigonometric formula) |
|} | |} | ||
</div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b}} | </div>{{#NAVCONTENT:Answer|Answer 2.1:5|Solution a|Solution 2.1:5a|Solution b|Solution 2.1:5b}} |
Version vom 10:55, 28. Okt. 2008
Theory | Exercises |
Exercise 2.1:1
Interpret each integral as an area, and determine its value.
a) | ![]() | b) | ![]() |
c) | ![]() | d) | ![]() ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.1:2
Calculate the integrals
a) | ![]() | b) | ![]() |
c) | ![]() ![]() ![]() ![]() ![]() | d) | ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.1:3
Calculate the integrals
a) | ![]() | b) | ![]() |
c) | ![]() | d) | ![]() |
Answer | Solution a | Solution b | Solution c | Solution d
Exercise 2.1:4
a) | Calculate the area between the curve ![]() ![]() ![]() |
b) | Calculate the area under the curve |
c) | Calculate the area of the finite region between the curves |
d) | Calculate the area of the finite region enclosed by the curves ![]() |
e) | Calculate the area of the region given by the inequality, ![]() ![]() |
Answer | Solution a | Solution b | Solution c | Solution d | Solution e
Exercise 2.1:5
Calculate the integral
a) | ![]() ![]() ![]() |
b) | ![]() |