Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.2:3d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
Observe that the derivative of the denominator is, for the most part, equal to the numerator,
Observe that the derivative of the denominator is, for the most part, equal to the numerator,
-
 
+
{{Displayed math||<math>(x^2+2x+2)' = 2x+2 = 2(x+1)</math>}}
-
<math>\left( x^{2}+2x+2 \right)^{\prime }=2x+2=2\left( x+1 \right)</math>
+
-
 
+
so we can rewrite the integral as
so we can rewrite the integral as
 +
{{Displayed math||<math>\int \frac{\tfrac{1}{2}}{x^2+2x+2}\cdot (x^2+2x+2)'\,dx\,\textrm{.}</math>}}
-
<math>\int{\frac{\frac{1}{2}}{x^{2}+2x+2}}\centerdot \left( x^{2}+2x+2 \right)^{\prime }\,dx</math>
+
The substitution <math>u=x^2+2x+2</math> will therefore simplify the integral considerably,
-
 
+
-
 
+
-
The substitution
+
-
<math>u=x^{2}+2x+2</math>
+
-
will therefore simplify the integral considerably:
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \int{\frac{x+1}{x^{2}+2x+2}}\,dx=\left\{ \begin{matrix}
+
-
u=x^{2}+2x+2 \\
+
-
du=\left( x^{2}+2x+2 \right)^{\prime }\,dx=2\left( x+1 \right)\,dx \\
+
-
\end{matrix} \right\} \\
+
-
& =\frac{1}{2}\int{\frac{\,du}{u}}=\frac{1}{2}\ln \left| u \right|+C \\
+
-
& =\frac{1}{2}\ln \left| x^{2}+2x+2 \right|+C \\
+
-
\end{align}</math>
+
-
 
+
-
NOTE: By completing the square
+
 +
{{Displayed math||<math>\begin{align}
 +
\int \frac{x+1}{x^2+2x+2}\,dx
 +
&= \left\{\begin{align}
 +
u &= x^2+2x+2\\[5pt]
 +
du &= (x^2+2x+2)'\,dx = 2(x+1)\,dx
 +
\end{align}\right\}\\[5pt]
 +
&= \frac{1}{2}\int \frac{du}{u}\\[5pt]
 +
&= \frac{1}{2}\ln |u| + C\\[5pt]
 +
&= \frac{1}{2}\ln |x^2+2x+2| + C\,\textrm{.}
 +
\end{align}</math>}}
-
<math>x^{2}+2x+2=\left( x+1 \right)^{2}-1^{2}+2=\left( x+1 \right)^{2}+1</math>
 
 +
Note: By completing the square
-
we see that
+
{{Displayed math||<math>x^2+2x+2 = (x+1)^2-1^2+2 = (x+1)^2+1</math>}}
-
<math>x^{2}+2x+2</math>
+
-
is always greater than or equal to
+
-
<math>\text{1}</math>, so we can take away the absolute sign around the argument in
+
-
<math>\text{ln}</math>
+
-
and answer with
+
 +
we see that <math>x^2+2x+2</math> is always greater than or equal to 1, so we can take away the absolute sign around the argument in <math>\ln</math> and answer with
-
<math>\frac{1}{2}\ln \left( x^{2}+2x+2 \right)+C</math>
+
{{Displayed math||<math>\frac{1}{2}\ln (x^2+2x+2) + C\,\textrm{.}</math>}}

Version vom 14:34, 28. Okt. 2008

Observe that the derivative of the denominator is, for the most part, equal to the numerator,

(x2+2x+2)=2x+2=2(x+1)

so we can rewrite the integral as

21x2+2x+2(x2+2x+2)dx. 

The substitution u=x2+2x+2 will therefore simplify the integral considerably,

x+1x2+2x+2dx=udu=x2+2x+2=(x2+2x+2)dx=2(x+1)dx=21udu=21lnu+C=21lnx2+2x+2+C.


Note: By completing the square

x2+2x+2=(x+1)212+2=(x+1)2+1

we see that x2+2x+2 is always greater than or equal to 1, so we can take away the absolute sign around the argument in ln and answer with

21ln(x2+2x+2)+C.