Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 2.3:2d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
We shall solve the exercise in two different ways.
We shall solve the exercise in two different ways.
-
Method 1 (partial integration)
 
-
As first sight, partial integration seems impossible, but the trick is to see the integrand as the product
+
'''Method 1''' (integration by parts)
 +
At first sight, integration by parts seems impossible, but the trick is to see the integrand as the product
-
<math>1\centerdot \ln x</math>
+
{{Displayed math||<math>1\centerdot \ln x\,\textrm{.}</math>}}
 +
We integrate the factor <math>1</math> and differentiate <math>\ln x</math>,
-
We integrate the factor
+
{{Displayed math||<math>\begin{align}
-
<math>\text{1}</math>
+
\int 1\cdot\ln x\,dx
-
and differentiate
+
&= x\cdot\ln x - \int x\cdot\frac{1}{x}\,dx\\[5pt]
-
<math>\ln x</math>,
+
&= x\cdot\ln x - \int 1\,dx\\[5pt]
 +
&= x\cdot\ln x - x + C\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
'''Method 2''' (substitution)
-
& \int{1\centerdot \ln x\,dx}=x\centerdot \ln x-\int{x\centerdot \frac{1}{x}\,dx} \\
+
-
& =x\centerdot \ln x-\int{1\,dx} \\
+
-
& =x\centerdot \ln x-x+C \\
+
-
\end{align}</math>
+
 +
It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression <math>u=\ln x\,</math>. The problem we encounter is how we should handle the change from <math>dx</math> to <math>du</math>. With this substitution, the relation between <math>dx</math> and <math>du</math> becomes
-
Method 2 (substitution)
+
{{Displayed math||<math>du = (\ln x)'\,dx = \frac{1}{x}\,dx</math>}}
-
It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression
+
and because <math>u = \ln x</math>, then <math>x=e^u</math> and we have that
-
<math>u=\text{ln }x</math>. The problem we encounter is how we should handle the change from
+
-
<math>dx</math>
+
-
to
+
-
<math>du</math>. With this substitution, the relation between
+
-
<math>dx</math>
+
-
and
+
-
<math>du</math>
+
-
becomes
+
-
 
+
-
 
+
-
<math>du=\left( \ln x \right)^{\prime }\,dx=\frac{1}{x}\,dx</math>
+
-
 
+
-
 
+
-
and because
+
-
<math>u=\text{ln }x</math>, then
+
-
<math>x=e^{u}</math>
+
-
and we have that
+
-
 
+
-
 
+
-
<math>du=\frac{1}{e^{u}\,}\,dx\quad \Leftrightarrow \quad dx=e^{u}\,du</math>
+
 +
{{Displayed math||<math>du = \frac{1}{e^u}\,dx\quad\Leftrightarrow\quad dx = e^u\,du\,\textrm{.}</math>}}
Thus, the substitution becomes
Thus, the substitution becomes
 +
{{Displayed math||<math>\begin{align}
 +
\int \ln x\,dx
 +
= \left\{\begin{align}
 +
u &= \ln x\\[5pt]
 +
dx &= e^u\,du
 +
\end{align}\right\}
 +
= \int ue^u\,du\,\textrm{.}
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Now, we carry out an integration by parts,
-
& \int{\ln x\,dx}=\left\{ \begin{matrix}
+
-
u=\text{ln }x \\
+
-
dx=e^{u}\,du \\
+
-
\end{matrix} \right\} \\
+
-
& =\int{ue^{u}\,du} \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
Now, we carry out a partial integration
+
-
 
+
-
 
+
-
<math>\begin{align}
+
-
& \int{ue^{u}\,du}=u\centerdot e^{u}-\int{1\centerdot e^{u}\,du} \\
+
-
& =u\centerdot e^{u}-\int{e^{u}\,du} \\
+
-
& =u\centerdot e^{u}-e^{u}+C \\
+
-
& =\left( u-1 \right)e^{u}+C \\
+
-
\end{align}</math>
+
 +
{{Displayed math||<math>\begin{align}
 +
\int u\cdot e^u\,du
 +
&= u\cdot e^u - \int 1\cdot e^u\,du\\[5pt]
 +
&= ue^u - \int e^u\,du\\[5pt]
 +
&= ue^u - e^u + C\\[5pt]
 +
&= (u-1)e^u + C\,,
 +
\end{align}</math>}}
and the answer becomes
and the answer becomes
-
 
+
{{Displayed math||<math>\begin{align}
-
 
+
\int \ln x\,dx
-
<math>\begin{align}
+
&= (\ln x-1)e^{\ln x} + C\\[5pt]
-
& \int{\ln x\,dx}=\left( \ln x-1 \right)e^{\ln x}+C \\
+
&= (\ln x-1)x + C\,\textrm{.}
-
& =\left( \ln x-1 \right)x+C \\
+
\end{align}</math>}}
-
\end{align}</math>
+

Version vom 09:13, 29. Okt. 2008

We shall solve the exercise in two different ways.


Method 1 (integration by parts)

At first sight, integration by parts seems impossible, but the trick is to see the integrand as the product

1lnx.

We integrate the factor 1 and differentiate lnx,

1lnxdx=xlnxxx1dx=xlnx1dx=xlnxx+C.


Method 2 (substitution)

It seems difficult to find some suitable expression to substitute, so we try to substitute the whole expression u=lnx. The problem we encounter is how we should handle the change from dx to du. With this substitution, the relation between dx and du becomes

du=(lnx)dx=x1dx

and because u=lnx, then x=eu and we have that

du=1eudxdx=eudu.

Thus, the substitution becomes

lnxdx=udx=lnx=eudu=ueudu. 

Now, we carry out an integration by parts,

ueudu=ueu1eudu=ueueudu=ueueu+C=(u1)eu+C

and the answer becomes

lnxdx=(lnx1)elnx+C=(lnx1)x+C.