Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.1:4f

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
{{NAVCONTENT_START}}
 
Because the equation contains both <math>z</math> and <math>\bar{z}</math>, we cannot use <math>z</math> (or <math>\bar{z}</math>) alone as an unknown, so we are forced to set
Because the equation contains both <math>z</math> and <math>\bar{z}</math>, we cannot use <math>z</math> (or <math>\bar{z}</math>) alone as an unknown, so we are forced to set
-
 
+
{{Displayed math||<math>z=x+iy</math>}}
-
<math>z=x+iy</math>
+
-
 
+
and use the real part <math>x</math> and the imaginary part <math>y</math> as unknowns.
and use the real part <math>x</math> and the imaginary part <math>y</math> as unknowns.
Zeile 10: Zeile 7:
With this approach, the left-hand side of the equation becomes
With this approach, the left-hand side of the equation becomes
-
 
+
{{Displayed math||<math>\begin{align}
-
<math>(1+i)(x-iy)+i(x+iy)</math>
+
(1+i)(x-iy)+i(x+iy)
-
 
+
&= 1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\[5pt]
-
<math>
+
&= x-iy+ix+y+ix-y\\[5pt]
-
\begin{align} &=1\cdot x -1\cdot iy +i\cdot x -i^2y + i\cdot x + i^2y\\
+
&= x+(2x-y)i
-
&=x-iy+ix+y+ix-y\\
+
\end{align}</math>}}
-
&=x+(2x-y)i\end{align}</math>
+
-
 
+
and the whole equation becomes
and the whole equation becomes
-
 
+
{{Displayed math||<math>x+(2x-y)i=3+5i\,\textrm{.}</math>}}
-
<math>x+(2x-y)i=3+5i</math>.
+
-
 
+
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e.
The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e.
-
 
+
{{Displayed math||<math>\left\{\begin{align}x\phantom{{}-y}{}&=3\,,\\[5pt] 2x-y&=5\,\textrm{.}\end{align}\right.</math>}}
-
<math>\begin{cases}x=3\\2x-y=5.\end{cases}</math>
+
-
 
+
This gives <math>x=3</math> and <math>y=2x-5=2\cdot 3-5=1</math>. Thus, the equation has the solution <math>z=3+i</math>.
This gives <math>x=3</math> and <math>y=2x-5=2\cdot 3-5=1</math>. Thus, the equation has the solution <math>z=3+i</math>.
-
A quick check shows that <math>z=3+i</math> satisfies the equation in the exercise:
+
A quick check shows that <math>z=3+i</math> satisfies the equation in the exercise,
-
 
+
-
 
+
-
<math>\begin{align}LHS &= (1+i)\bar{z}+iz=(1+i)(3-i)+i(3+i)\\
+
-
&= 3-i+3i+1+3i-1 = 3+5i = RHS\end{align}</math>
+
-
{{NAVCONTENT_STOP}}
+
{{Displayed math||<math>\begin{align}
 +
\text{LHS}
 +
&= (1+i)\bar{z}+iz\\[5pt]
 +
&= (1+i)(3-i)+i(3+i)\\[5pt]
 +
&= 3-i+3i+1+3i-1\\[5pt]
 +
&= 3+5i\\[5pt]
 +
&= \text{RHS}\,\textrm{.}
 +
\end{align}</math>}}

Version vom 08:30, 30. Okt. 2008

Because the equation contains both z and z, we cannot use z (or z) alone as an unknown, so we are forced to set

z=x+iy

and use the real part x and the imaginary part y as unknowns.

With this approach, the left-hand side of the equation becomes

(1+i)(xiy)+i(x+iy)=1x1iy+ixi2y+ix+i2y=xiy+ix+y+ixy=x+(2xy)i

and the whole equation becomes

x+(2xy)i=3+5i.

The two complex numbers on the left- and right-hand sides are equal when both real and imaginary parts are equal, i.e.

x2xy=3=5. 

This gives x=3 and y=2x5=235=1. Thus, the equation has the solution z=3+i.

A quick check shows that z=3+i satisfies the equation in the exercise,

LHS=(1+i)z+iz=(1+i)(3i)+i(3+i)=3i+3i+1+3i1=3+5i=RHS.