Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

No jsMath TeX fonts found -- using image fonts instead.
These may be slow and might not print well.
Use the jsMath control panel to get additional information.
jsMath Control PanelHide this Message


jsMath

Lösung 3.3:4b

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 1: Zeile 1:
-
Typically, one solves a second-degree by completing the square, followed by taking the root.
+
Typically, one solves a second-degree by completing the square, followed by taking the square root.
If we complete the square of the left-hand side, we get
If we complete the square of the left-hand side, we get
 +
{{Displayed math||<math>\begin{align}
 +
(z-2)^2-2^2+5&=0,\\[5pt]
 +
(z-2)^2+1&=0.
 +
\end{align}</math>}}
-
<math>\begin{align}
+
Taking the square root then gives that the equation has roots <math>z-2=\pm i</math>, i.e. <math>z=2+i</math> and <math>z=2-i</math>.
-
& \left( z-2 \right)^{2}-2^{2}+5=0, \\
+
-
& \left( z-2 \right)^{2}+1=0. \\
+
-
\end{align}</math>
+
-
 
+
-
 
+
-
Taking the root then gives that the equation has roots
+
-
<math>z-2=\pm i,</math>
+
-
i.e.
+
-
<math>z=\text{2}+i</math>
+
-
and
+
-
<math>z=\text{2}-i</math>.
+
If we want to be sure that we have found the correct solutions, we can substitute each solution into the equation and see whether the equation is satisfied.
If we want to be sure that we have found the correct solutions, we can substitute each solution into the equation and see whether the equation is satisfied.
- 
- 
-
<math>\begin{align}
 
-
& z=\text{2}+i:\quad z^{2}-4z+5=\left( \text{2}+i \right)^{2}-4\left( \text{2}+i \right)+5 \\
 
-
& =2^{2}+4i+i^{2}-8-4i+5 \\
 
-
& =4+4i-1-8-4i+5=0 \\
 
-
\end{align}</math>
 
- 
- 
- 
<math>\begin{align}
<math>\begin{align}
-
& z=\text{2-}i:\quad z^{2}-4z+5=\left( \text{2-}i \right)^{2}-4\left( \text{2-}i \right)+5 \\
+
z=2+i:\qquad z^2-4z+5
-
& =2^{2}-4i+i^{2}-8+4i+5 \\
+
&= (2+i)^2-4(2+i)+5\\[5pt]
-
& =4-4i-1-8+4i+5=0 \\
+
&= 2^2+4i+i^2-8-4i+5\\[5pt]
 +
&= 4+4i-1-8-4i+5\\[5pt]
 +
&=0\,,\\[10pt]
 +
z={}\rlap{2-i:}\phantom{2+i:}{}\qquad z^2-4z+5
 +
&= (2-i)^2-4(2-i)+5\\[5pt]
 +
&= 2^2-4i+i^2-8+4i+5\\[5pt]
 +
&= 4-4i-1-8+4i+5\\[5pt]
 +
&= 0\,\textrm{.}
\end{align}</math>
\end{align}</math>

Version vom 14:30, 30. Okt. 2008

Typically, one solves a second-degree by completing the square, followed by taking the square root.

If we complete the square of the left-hand side, we get

(z2)222+5(z2)2+1=0=0

Taking the square root then gives that the equation has roots z2=i, i.e. z=2+i and z=2i.

If we want to be sure that we have found the correct solutions, we can substitute each solution into the equation and see whether the equation is satisfied.

z=2+i:z24z+5z=2i:z24z+5=(2+i)24(2+i)+5=22+4i+i284i+5=4+4i184i+5=0=(2i)24(2i)+5=224i+i28+4i+5=44i18+4i+5=0.