Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 3.3:4c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
Zeile 20: Zeile 20:
&= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt]
&= (-1)^2 + 2\cdot i\sqrt{2} + i^2\bigl(\sqrt{2}\,\bigr)^2 - 2 - 2i\sqrt{2} + 3\\[5pt]
&= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt]
&= 1+2\cdot i\sqrt{2} - 2 - 2 - 2\sqrt{2}i + 3\\[5pt]
-
&= 0.
+
&= 0\,\textrm{.}
\end{align}</math>
\end{align}</math>

Version vom 14:44, 30. Okt. 2008

We complete the square on the left-hand side,

(z+1)212+3(z+1)2+2=0=0.

Taking the root now gives z+1=i2 , i.e. z=1+i2  and z=1i2 .

We test the solutions in the equation to ascertain that we have calculated correctly.

z=1+i2:z2+2z+3z=1i2:z2+2z+3=1+i22+21+i2+3=(1)22i2+i2222+2i2+3=12i222+2i2+3=0=1i22+21i2+3=(1)2+2i2+i22222i2+3=1+2i22222i+3=0.