Loading http://wiki.math.se/jsMath/extensions/bbox.js
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 1.2:2a

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
The expression is composed of two parts: first, an outer part,
The expression is composed of two parts: first, an outer part,
-
{{Displayed math||<math>\sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,}</math>}}
+
{{Abgesetzte Formel||<math>\sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,}</math>}}
and then an inner part, <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} = x^{2}\,</math>.
and then an inner part, <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} = x^{2}\,</math>.
Zeile 9: Zeile 9:
<math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}</math> were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part <math>\bigl(\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}\bigr)'</math>, so that
<math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}</math> were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part <math>\bigl(\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}\bigr)'</math>, so that
-
{{Displayed math||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\,x^2\,} = \cos \bbox[#FFEEAA;,1.5pt]{\,x^2\,}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\,x^2\,}\bigr)' = \cos x^2\cdot 2x\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\,x^2\,} = \cos \bbox[#FFEEAA;,1.5pt]{\,x^2\,}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\,x^2\,}\bigr)' = \cos x^2\cdot 2x\,\textrm{.}</math>}}

Version vom 12:52, 10. Mär. 2009

The expression is composed of two parts: first, an outer part,

\displaystyle \sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,}

and then an inner part, \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} = x^{2}\,.

When we differentiate compound expressions, we first differentiate the outer part, \displaystyle \sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}, as if \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,} were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part \displaystyle \bigl(\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}\bigr)', so that

\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\,x^2\,} = \cos \bbox[#FFEEAA;,1.5pt]{\,x^2\,}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\,x^2\,}\bigr)' = \cos x^2\cdot 2x\,\textrm{.}