Loading http://wiki.math.se/jsMath/extensions/bbox.js
Lösung 1.2:2a
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The expression is composed of two parts: first, an outer part, | The expression is composed of two parts: first, an outer part, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,}</math>}} |
and then an inner part, <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} = x^{2}\,</math>. | and then an inner part, <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} = x^{2}\,</math>. | ||
Zeile 9: | Zeile 9: | ||
<math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}</math> were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part <math>\bigl(\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}\bigr)'</math>, so that | <math>\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}</math> were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part <math>\bigl(\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}\bigr)'</math>, so that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\,x^2\,} = \cos \bbox[#FFEEAA;,1.5pt]{\,x^2\,}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\,x^2\,}\bigr)' = \cos x^2\cdot 2x\,\textrm{.}</math>}} |
Version vom 12:52, 10. Mär. 2009
The expression is composed of two parts: first, an outer part,
\displaystyle \sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} |
and then an inner part, \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{x^2_2}\,} = x^{2}\,.
When we differentiate compound expressions, we first differentiate the outer part, \displaystyle \sin \bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}, as if \displaystyle \bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,} were the variable that we differentiate with respect to, and then we multiply with the derivative of the inner part \displaystyle \bigl(\bbox[#FFEEAA;,1.5pt]{\,\phantom{xx}\,}\bigr)', so that
\displaystyle \frac{d}{dx}\,\sin \bbox[#FFEEAA;,1.5pt]{\,x^2\,} = \cos \bbox[#FFEEAA;,1.5pt]{\,x^2\,}\cdot \bigl(\bbox[#FFEEAA;,1.5pt]{\,x^2\,}\bigr)' = \cos x^2\cdot 2x\,\textrm{.} |