Processing Math: Done
Lösung 2.1:1c
Aus Online Mathematik Brückenkurs 2
(Unterschied zwischen Versionen)
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 1: | Zeile 1: | ||
The straight line <math>y=3-2x</math> cuts the ''x''-axis at the point | The straight line <math>y=3-2x</math> cuts the ''x''-axis at the point | ||
- | {{ | + | {{Abgesetzte Formel||<math>y=3-2x=0\quad \Leftrightarrow \quad x=3/2</math>}} |
so the part of the line to the right of <math>x=3/2</math> lies under the ''y''-axis. | so the part of the line to the right of <math>x=3/2</math> lies under the ''y''-axis. | ||
Zeile 15: | Zeile 15: | ||
We obtain | We obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\int\limits_{0}^{2} (3-2x)\,dx = \frac{1}{2}\cdot\frac{3}{2}\cdot 3 - \frac{1}{2}\cdot\frac{1}{2}\cdot 1 = \frac{9}{4} - \frac{1}{4} = 2\,\textrm{.}</math>}} |
Version vom 12:57, 10. Mär. 2009
The straight line
![]() ![]() |
so the part of the line to the right of 2
When the curve of a function lies both above and below the x-axis, the value of the integral can be interpreted as “an area having a sign”, which means that, for that part where the curve is under the x-axis, we instead subtract the area between the curve and the x-axis.
If we divide up the area between the straight line and the x-axis at 2
We obtain
![]() ![]() ![]() ![]() ![]() |