Lösung 2.1:4c
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 7: | Zeile 7: | ||
The region is bounded above by the parabola <math>y=8-x^2/8</math> and below by the parabola <math>y=x^2/4+2</math>. If we can determine the ''x''-coordinates, <math>x=a</math> and <math>x=b</math>, for the points of intersection between the curves, the area we are looking for will be given by | The region is bounded above by the parabola <math>y=8-x^2/8</math> and below by the parabola <math>y=x^2/4+2</math>. If we can determine the ''x''-coordinates, <math>x=a</math> and <math>x=b</math>, for the points of intersection between the curves, the area we are looking for will be given by | ||
- | {{ | + | {{Abgesetzte Formel||<math>\text{Area} = \int\limits_{a}^{b} \bigl(\bigl(8-\tfrac{1}{8}x^2\bigr) - \bigl(\tfrac{1}{4}x^2+2\bigr)\bigr)\,dx\,\textrm{.}</math>}} |
The integrand is the ''y''-value for the upper parabola minus the corresponding ''y''-value for the lower parabola. | The integrand is the ''y''-value for the upper parabola minus the corresponding ''y''-value for the lower parabola. | ||
Zeile 13: | Zeile 13: | ||
At the points where the curves intersect each other, the ''x''- and ''y''-coordinates are equal, which gives the equation system, | At the points where the curves intersect each other, the ''x''- and ''y''-coordinates are equal, which gives the equation system, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
y &= 8-\tfrac{1}{8}x^2\,,\\[5pt] | y &= 8-\tfrac{1}{8}x^2\,,\\[5pt] | ||
y &= \tfrac{1}{4}x^2+2\,\textrm{.} | y &= \tfrac{1}{4}x^2+2\,\textrm{.} | ||
Zeile 20: | Zeile 20: | ||
If we eliminate ''y'' from this system, we get the following equation for ''x'', | If we eliminate ''y'' from this system, we get the following equation for ''x'', | ||
- | {{ | + | {{Abgesetzte Formel||<math>8-\tfrac{1}{8}x^2 = \tfrac{1}{4}x^2+2\,\textrm{.}</math>}} |
If we move the <math>x^2</math>-terms onto one side and the constants onto the other, we obtain | If we move the <math>x^2</math>-terms onto one side and the constants onto the other, we obtain | ||
- | {{ | + | {{Abgesetzte Formel||<math>\tfrac{1}{4}x^2 + \tfrac{1}{8}x^2 = 8-2\,,</math>}} |
i.e. | i.e. | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\bigl(\tfrac{1}{4}+\tfrac{1}{8}\bigr)x^2 &= 6\,,\\[5pt] | \bigl(\tfrac{1}{4}+\tfrac{1}{8}\bigr)x^2 &= 6\,,\\[5pt] | ||
\tfrac{3}{8}x^2 &= 6\,,\\[5pt] | \tfrac{3}{8}x^2 &= 6\,,\\[5pt] | ||
Zeile 38: | Zeile 38: | ||
The area of the area between the curves is given by | The area of the area between the curves is given by | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{Area} &= \int\limits_{-4}^{4} \Bigl(\Bigl(8-\frac{1}{8}x^2\Bigr)-\Bigl( \frac{1}{4}x^2+2\Bigr) \Bigr)\,dx\\[5pt] | \text{Area} &= \int\limits_{-4}^{4} \Bigl(\Bigl(8-\frac{1}{8}x^2\Bigr)-\Bigl( \frac{1}{4}x^2+2\Bigr) \Bigr)\,dx\\[5pt] | ||
&= \int\limits_{-4}^{4}\Bigl(8-\frac{1}{8}x^2-\frac{1}{4}x^2-2\Bigr)\,dx\\[5pt] | &= \int\limits_{-4}^{4}\Bigl(8-\frac{1}{8}x^2-\frac{1}{4}x^2-2\Bigr)\,dx\\[5pt] |
Version vom 12:59, 10. Mär. 2009
First, we need a picture of what the region looks like.
Both curves, 4+2
8
The region is bounded above by the parabola 8
4+2
![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The integrand is the y-value for the upper parabola minus the corresponding y-value for the lower parabola.
At the points where the curves intersect each other, the x- and y-coordinates are equal, which gives the equation system,
![]() ![]() ![]() ![]() |
If we eliminate y from this system, we get the following equation for x,
If we move the
![]() |
i.e.
![]() ![]() ![]() ![]() |
The x-coordinates of the points of intersection are therefore equal to
The area of the area between the curves is given by
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |