Lösung 2.1:4d
Aus Online Mathematik Brückenkurs 2
K |
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel)) |
||
Zeile 13: | Zeile 13: | ||
The area of each part is given by the integrals | The area of each part is given by the integrals | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{Left area} &= \int\limits_a^b (x+2-1)\,dx\,,\\[5pt] | \text{Left area} &= \int\limits_a^b (x+2-1)\,dx\,,\\[5pt] | ||
\text{Right area} &= \int\limits_b^c \Bigl(\frac{1}{x}-1\Bigr)\,dx\,, | \text{Right area} &= \int\limits_b^c \Bigl(\frac{1}{x}-1\Bigr)\,dx\,, | ||
Zeile 26: | Zeile 26: | ||
*<math>x=a</math>: The point of intersection between <math>y=1</math> and <math>y=x+2</math> must satisfy both equations of the lines, | *<math>x=a</math>: The point of intersection between <math>y=1</math> and <math>y=x+2</math> must satisfy both equations of the lines, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
y &= 1\,,\\[5pt] | y &= 1\,,\\[5pt] | ||
y &= x+2\,\textrm{.} | y &= x+2\,\textrm{.} | ||
Zeile 36: | Zeile 36: | ||
*<math>x=b</math>: At the point where the curves <math>y=x+2</math> and <math>y=1/x</math> meet, we have that | *<math>x=b</math>: At the point where the curves <math>y=x+2</math> and <math>y=1/x</math> meet, we have that | ||
- | {{ | + | {{Abgesetzte Formel||<math>\left\{\begin{align} |
y &= x+2\,,\\[5pt] | y &= x+2\,,\\[5pt] | ||
y &= 1/x\,\textrm{.} | y &= 1/x\,\textrm{.} | ||
Zeile 43: | Zeile 43: | ||
:If we eliminate <math>y</math>, we obtain an equation for <math>x</math>, | :If we eliminate <math>y</math>, we obtain an equation for <math>x</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x+2=\frac{1}{x}\,,</math>}} |
:which we multiply by <math>x</math>, | :which we multiply by <math>x</math>, | ||
- | {{ | + | {{Abgesetzte Formel||<math>x^{2}+2x=1\,\textrm{.}</math>}} |
:Completing the square of the left-hand side, | :Completing the square of the left-hand side, | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
(x+1)^2 - 1^2 &= 1\,,\\[5pt] | (x+1)^2 - 1^2 &= 1\,,\\[5pt] | ||
(x+1)^2 &= 2\,, | (x+1)^2 &= 2\,, | ||
Zeile 66: | Zeile 66: | ||
The sub-areas are | The sub-areas are | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{Left area} | \text{Left area} | ||
&= \int\limits_{-1}^{\sqrt{2}-1} (x+2-1)\,dx\\[5pt] | &= \int\limits_{-1}^{\sqrt{2}-1} (x+2-1)\,dx\\[5pt] | ||
Zeile 86: | Zeile 86: | ||
The total area is | The total area is | ||
- | {{ | + | {{Abgesetzte Formel||<math>\begin{align} |
\text{Area} | \text{Area} | ||
&= \text{(left area)} + \text{(right area)}\\[5pt] | &= \text{(left area)} + \text{(right area)}\\[5pt] |
Version vom 12:59, 10. Mär. 2009
We start by drawing the three curves:
When we draw the curves on the same diagram, we see that the region is bounded from below in the y-direction by the horizontal line x
If we denote the x-coordinates of the intersection points between the curves by x
The area of each part is given by the integrals
![]() ![]() ![]() ![]() ![]() ![]() |
and the total area is the sum of these areas.
If we just manage to determine the curves' points of intersection, the rest is just a matter of integration.
To determine the points of intersection:
x=a : The point of intersection betweeny=1 andy=x+2 must satisfy both equations of the lines,
![]() ![]() |
- This gives that
x must satisfyx+2=1 , i.e.x=−1 . Thus,a=−1 .
x=b : At the point where the curvesy=x+2 andy=1 meet, we have thatx
![]() ![]() ![]() |
- If we eliminate
y , we obtain an equation forx ,
![]() |
- which we multiply by
x ,
- Completing the square of the left-hand side,
![]() ![]() |
- and taking the square root gives that
x=−1 , leading to2
2
2
x=c : The final point of intersection is given by the condition that the equation to both curves,y=1 andy=1 , are satisfied simultaneously. We see almost immediately that this givesx
x=1 , i.e.c=1 .
The sub-areas are
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
The total area is
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |