Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.1:4d

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 13: Zeile 13:
The area of each part is given by the integrals
The area of each part is given by the integrals
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\text{Left area} &= \int\limits_a^b (x+2-1)\,dx\,,\\[5pt]
\text{Left area} &= \int\limits_a^b (x+2-1)\,dx\,,\\[5pt]
\text{Right area} &= \int\limits_b^c \Bigl(\frac{1}{x}-1\Bigr)\,dx\,,
\text{Right area} &= \int\limits_b^c \Bigl(\frac{1}{x}-1\Bigr)\,dx\,,
Zeile 26: Zeile 26:
*<math>x=a</math>: The point of intersection between <math>y=1</math> and <math>y=x+2</math> must satisfy both equations of the lines,
*<math>x=a</math>: The point of intersection between <math>y=1</math> and <math>y=x+2</math> must satisfy both equations of the lines,
-
{{Displayed math||<math>\left\{\begin{align}
+
{{Abgesetzte Formel||<math>\left\{\begin{align}
y &= 1\,,\\[5pt]
y &= 1\,,\\[5pt]
y &= x+2\,\textrm{.}
y &= x+2\,\textrm{.}
Zeile 36: Zeile 36:
*<math>x=b</math>: At the point where the curves <math>y=x+2</math> and <math>y=1/x</math> meet, we have that
*<math>x=b</math>: At the point where the curves <math>y=x+2</math> and <math>y=1/x</math> meet, we have that
-
{{Displayed math||<math>\left\{\begin{align}
+
{{Abgesetzte Formel||<math>\left\{\begin{align}
y &= x+2\,,\\[5pt]
y &= x+2\,,\\[5pt]
y &= 1/x\,\textrm{.}
y &= 1/x\,\textrm{.}
Zeile 43: Zeile 43:
:If we eliminate <math>y</math>, we obtain an equation for <math>x</math>,
:If we eliminate <math>y</math>, we obtain an equation for <math>x</math>,
-
{{Displayed math||<math>x+2=\frac{1}{x}\,,</math>}}
+
{{Abgesetzte Formel||<math>x+2=\frac{1}{x}\,,</math>}}
:which we multiply by <math>x</math>,
:which we multiply by <math>x</math>,
-
{{Displayed math||<math>x^{2}+2x=1\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>x^{2}+2x=1\,\textrm{.}</math>}}
:Completing the square of the left-hand side,
:Completing the square of the left-hand side,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
(x+1)^2 - 1^2 &= 1\,,\\[5pt]
(x+1)^2 - 1^2 &= 1\,,\\[5pt]
(x+1)^2 &= 2\,,
(x+1)^2 &= 2\,,
Zeile 66: Zeile 66:
The sub-areas are
The sub-areas are
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\text{Left area}
\text{Left area}
&= \int\limits_{-1}^{\sqrt{2}-1} (x+2-1)\,dx\\[5pt]
&= \int\limits_{-1}^{\sqrt{2}-1} (x+2-1)\,dx\\[5pt]
Zeile 86: Zeile 86:
The total area is
The total area is
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\text{Area}
\text{Area}
&= \text{(left area)} + \text{(right area)}\\[5pt]
&= \text{(left area)} + \text{(right area)}\\[5pt]

Version vom 12:59, 10. Mär. 2009

We start by drawing the three curves:

When we draw the curves on the same diagram, we see that the region is bounded from below in the y-direction by the horizontal line y=1 and above partly by y=x+2 and partly by y=1x.

If we denote the x-coordinates of the intersection points between the curves by x=a, x=b and x=c, as shown in the figure, we see that the region can be divided up into two parts. In the left part between x=a and x=b, the upper limit is y=x+2, whilst in the right part between x=b and x=c the curve y=1x is the upper limit.

The area of each part is given by the integrals

Left areaRight area=ba(x+21)dx=cbx11dx

and the total area is the sum of these areas.

If we just manage to determine the curves' points of intersection, the rest is just a matter of integration.

To determine the points of intersection:

  • x=a: The point of intersection between y=1 and y=x+2 must satisfy both equations of the lines,
yy=1=x+2. 
This gives that x must satisfy x+2=1, i.e. x=1. Thus, a=1.


  • x=b: At the point where the curves y=x+2 and y=1x meet, we have that
yy=x+2=1x. 
If we eliminate y, we obtain an equation for x,
x+2=x1
which we multiply by x,
x2+2x=1.
Completing the square of the left-hand side,
(x+1)212(x+1)2=1=2
and taking the square root gives that x=12 , leading to

b=1+2 . (The alternative b=12  lies to the left of x=a.)


  • x=c: The final point of intersection is given by the condition that the equation to both curves, y=1 and y=1x, are satisfied simultaneously. We see almost immediately that this gives x=1, i.e. c=1.


The sub-areas are

Left areaRight area=211(x+21)dx=211(x+1)dx= 2x2+x 121=2212+212(1)2+(1)=22222+1+2121+1=2222+1+2121+1=12+21+2121+1=1=121x11dx= lnxx 121=ln11ln2121=01ln21+21=22ln21.

The total area is

Area=(left area)+(right area)=1+22ln21=21ln21.