Processing Math: Done
To print higher-resolution math symbols, click the
Hi-Res Fonts for Printing button on the jsMath control panel.

jsMath

Lösung 2.2:3c

Aus Online Mathematik Brückenkurs 2

(Unterschied zwischen Versionen)
Wechseln zu: Navigation, Suche
K
K (Robot: Automated text replacement (-{{Displayed math +{{Abgesetzte Formel))
Zeile 1: Zeile 1:
It is simpler to investigate the integral if we write it as
It is simpler to investigate the integral if we write it as
-
{{Displayed math||<math>\int \ln x\cdot\frac{1}{x}\,dx\,,</math>}}
+
{{Abgesetzte Formel||<math>\int \ln x\cdot\frac{1}{x}\,dx\,,</math>}}
The derivative of <math>\ln x</math> is <math>1/x</math>, so if we choose <math>u = \ln x</math>, the integral can be expressed as
The derivative of <math>\ln x</math> is <math>1/x</math>, so if we choose <math>u = \ln x</math>, the integral can be expressed as
-
{{Displayed math||<math>\int u\cdot u'\,dx\,\textrm{.}</math>}}
+
{{Abgesetzte Formel||<math>\int u\cdot u'\,dx\,\textrm{.}</math>}}
Thus, it seems that <math>u=\ln x</math> is a useful substitution,
Thus, it seems that <math>u=\ln x</math> is a useful substitution,
-
{{Displayed math||<math>\begin{align}
+
{{Abgesetzte Formel||<math>\begin{align}
\int \ln x\cdot\frac{1}{x}\,dx
\int \ln x\cdot\frac{1}{x}\,dx
&= \left\{\begin{align}
&= \left\{\begin{align}

Version vom 13:02, 10. Mär. 2009

It is simpler to investigate the integral if we write it as

lnxx1dx 

The derivative of lnx is 1x, so if we choose u=lnx, the integral can be expressed as

uudx. 

Thus, it seems that u=lnx is a useful substitution,

lnxx1dx=udu=lnx=(lnx)dx=(1x)dx=udu=21u2+C=21(lnx)2+C.